Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Behrndt, Böse, Penn-Karras WS 07/08 18. Februar 2008

Februar – Klausur (Verständnisteil) Analysis I für Ingenieure

Name:							
Neben einem handbeschriebener zugelassen.	n A4]	Blatt n	nit No	tizen s	ind kei	ine Hil	fsmittel
Die Lösungen sind in Reinschr i schriebene Klausuren können ni e				_	ben. M	it Bleis	stift ge-
Dieser Teil der Klausur umfasst o Rechenaufwand mit den Kenntn wenn nichts anderes gesagt ist, is	issen a	us der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt 60	Minu	iten.					
Die Gesamtklausur ist mit 40 v beiden Teile der Klausur mindes					,		
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 6 Punkte

Zeigen Sie mit Hilfe des Zwischenwertsatzes, dass ein $\xi \in [0, \pi]$ existiert mit

$$e^{\xi} \cos \xi = \sin \xi.$$

2. Aufgabe 6 Punkte

Geben Sie ein Polynom dritter Ordnung an, das in x = 2 eine doppelte Nullstelle, in x = 1 eine einfache Nullstelle und in x = 2 ein lokales Maximum besitzt.

3. Aufgabe 8 Punkte

Geben Sie den jeweiligen Ansatz für die reelle Partialbruchzerlegung folgender rationaler Funktionen an. Die Koeffizienten brauchen nicht berechnet zu werden!

a)
$$\frac{x}{(x+2)(x-4)}$$
, b) $\frac{3x+1}{(x-3)^2}$, c) $\frac{x^3-2}{x^4-1}$, d) $\frac{x+1}{x}$.

4. Aufgabe 6 Punkte

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar. Bestimmen Sie alle Stammfunktionen von

$$\frac{f'(x)f(x)}{2+f^2(x)}.$$

5. Aufgabe 7 Punkte

Beweisen Sie, dass für alle x > 0 gilt:

$$\frac{x}{1+x} \le \ln(1+x).$$

Hinweis: Mittelwertsatz

6. Aufgabe 7 Punkte

Gegeben sei die π -periodische Funktion

$$f(x) = 1 + \sum_{k=1}^{10} \left(\frac{1}{k^2} \cos(2kx) + \frac{1}{k} \sin(2kx) \right).$$

Bestimmen Sie:

$$\int_0^{\pi} f(x) \cos(6x) \, dx.$$