WiSe 16/17 10. April 2017

Doz.: Fackeldey, Penn-Karras, Yanchuk

Modulprüfung "Analysis I für Ingenieurwissenschaften"

Name:						. Vorn	ame:
MatrN	Vr.:					. Stud	liengang:
Lösunge den. Au	en sind i	n Reinsc Blatt bitt	hrift auf e Name	A4-Blät und Ma	tern abz trikelnui	zugeben.	sind keine weiteren Hilfsmittel zugelassen. Die Für jede Aufgabe bitte ein neues Blatt verwenhreiben. Mit Bleistift oder Rotstift geschriebene
aber vo	llständig	ge Begrü	ndung a	an. Insbe	esondere	soll im	venn nichts anderes gesagt, immer eine kurze, mer klar werden, welche Sätze oder Theoreme gibt es keine Punkte!
Die Bea	rbeitung	gszeit be	trägt 90	Minute	n.		
Die Kla	usur ist	mit 30 I	Punkten	bestand	len.		
Korrek	tur						
1	2	3	4	5	6	Σ	

1. Aufgabe (12 Punkte)

(a) Berechnen Sie den Grenzwert

$$\lim_{n \to \infty} \frac{n^2 + 2}{n + 3n^2}.$$

(b) Leiten Sie die folgenden Funktionen ab. Dabei ist $a \in \mathbb{R}$ eine Konstante.

$$f(x) := \ln(x e^a),$$
 $g(x) := (x^2 + 2x + 4) \sin(x)$

- (c) Berechnen Sie z_1z_2 und $\frac{z_1}{z_2}$ für $z_1:=1+3i$ und $z_2:=1+i$. Geben Sie das Ergebnis jeweils in der Form a+bi an.
- (d) Geben Sie sowohl den Ansatz der reellen als auch den Ansatz der komplexen Partialbruchzerlegung für die Funktion

$$h(x) := \frac{3x}{(x+1)(x-4)^2(x^2+4)}$$

an. Die Koeffizienten müssen dabei nicht bestimmt werden.

2. Aufgabe (8 Punkte)

Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) := \begin{cases} \frac{1 + \cos(\pi x)}{x - 1} & x \neq 1, \\ 0 & x = 1 \end{cases}.$$

- (a) Zeigen Sie, dass die Funktion auf dem gesamten Definitionsbereich stetig ist.
- (b) Untersuchen Sie, ob die Funktion an der Stelle x = 1 auch differenzierbar ist und geben Sie in diesem Fall die Ableitung f'(1) an.

3. Aufgabe (10 Punkte)

- (a) Bestimmen Sie alle **komplexen** Lösungen der Gleichung $z^4 = -25$.
 - (b) Finden Sie alle **reellen** Lösungen der Ungleichung $|x \pi| \le 2x$.
 - (c) Finden Sie alle **reellen** Lösungen der Gleichung $1 + 2 \ln(x^{1/3}) = \ln(\sqrt[3]{x^5})$.

4. Aufgabe (10 Punkte)

Berechnen Sie die folgenden Integrale:

(a)
$$\int_{-\infty}^{-1} \frac{1}{x^2} dx$$
, (b) $\int_{0}^{\frac{\pi^2}{4}} \sin(\sqrt{x}) dx$.

5. Aufgabe (11 Punkte)

Gegeben sei die Funktion $f:]-\sqrt{\pi}, \sqrt{\pi}[\to \mathbb{R}, \text{ definiert durch } f(x) := 1+\sin(x^2).$

- (a) Berechnen Sie das Bild von f, d.h. $f(] \sqrt{\pi}, \sqrt{\pi}[)$.
- (b) Berechnen Sie die ersten beiden Ableitungen von f. $zur\ Kontrolle:\ f''(x)=2\cos(x^2)-4x^2\sin(x^2)$
- (c) Finden Sie alle lokalen Minimal- und Maximalstellen.
- (d) Bestimmen Sie das Taylorpolynom T_2 zweiten Grades im Entwicklungspunkt $x_0 = 0$.

6. Aufgabe (9 Punkte)

(a) Zeigen Sie mithilfe der vollständigen Induktion, dass für alle natürlichen Zahlen $n \ge 1$ gilt:

$$\sum_{k=1}^{n} \frac{2}{k^2 + k} = \frac{2n}{n+1}.$$

(b) Wenden Sie den Mittelwertsatz auf die Funktion $\ln(x)$ an, um zu zeigen, dass $\ln(15) \le 14$.