Technische Universität Berlin Fakultät II – Institut für Mathematik G. Bärwolff, C. Mehl, G. Penn-Karras

SS 13 15.07.2013

Juli – Klausur Analysis II für Ingenieure

Name:	Vorname:				
MatrNr.:	Studiengang:				
Neben einem handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsmittel zugelassen.					
Die Lösungen sind in lesbarer Schrift auf bene Klausuren können nicht gewertet werd Klausuren ebenfalls nicht gewertet werden.	_			_	
Die Klausur besteht aus zwei Teilen, einem Rechen- und einem Verständnisteil. Geben Sie im Rechenteil immer den vollständigen Rechenweg und im Verständnisteil, wenn nichts anderes gesagt ist, immer eine kurze Begründung an.					
Die Bearbeitungszeit beträgt 90 Minuten .					
Die Gesamtklausur ist mit 30 von 60 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 30 Punkten erreicht werden.					
Korrektur					
	1	2	3	4	\sum
		5	6	7	Σ

Rechenteil

1. Aufgabe 7 Punkte

Gegeben sei die Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, \ f(x, y, z) = \frac{1}{2}x^2 + xy + y^3 + z^2.$$

- i) Berechnen Sie alle lokalen Extremwerte der Funktion f.
- ii) Besitzt die Funktion globale Extrema?

2. Aufgabe 7 Punkte

Die Menge $A\subset\mathbb{R}^2$ liege im 1. Quadranten und sei begrenzt durch die Kurven

$$y = -1 + \sqrt{x}$$
, $y = 1 - x$ und $y = 1$.

- i) Skizzieren Sie die Menge A.
- ii) Bestimmen Sie das Integral von f(x,y) = 2y über die Menge A.

3. Aufgabe 8 Punkte

Gegeben seien $K:=\{(x,y,z)\in\mathbb{R}^3:\ z\in[-1,1],\ 1\leq x^2+y^2\leq 4\}$ und das Vektorfeld

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3, \ \vec{v}(x, y, z) = \begin{pmatrix} x^2 + y^2 \\ x^2 - z^2 \\ xy^2 + x^2y + z \end{pmatrix}.$$

Bestimmen Sie das Flussintegral von \vec{v} durch den Rand von K.

4. Aufgabe 8 Punkte

Gegeben seien die Menge $D:=\{(x,y)\in\mathbb{R}^2:y\neq 0\}$ und die Funktionen

$$f: D \to \mathbb{R}^2, (x, y) \mapsto \begin{pmatrix} \frac{x}{y} \cos(x^2 + y) \\ \frac{1}{y} \sin(x^2) \end{pmatrix},$$

 $g: \mathbb{R}^2 \to \mathbb{R}, (s, t) \mapsto e^{st} + st.$

- i) Berechnen Sie das Taylorpolynom 2. Grades von g mit dem Entwicklungspunkt (0,0).
- ii) Wieviele Zeilen und Spalten haben die Funktionalmatrizen f'(x,y) bzw. $(g\circ f)'(x,y)$?
- iii) Berechnen Sie $f(0, \frac{\pi}{2})$ und $(g \circ f)'(0, \frac{\pi}{2})$.

Verständnisteil

5. Aufgabe 10 Punkte

Skizzieren Sie die folgenden Mengen oder beschreiben Sie diese in Worten und geben Sie ihre topologischen Eigenschaften (offen, abgeschlossen, beschränkt, kompakt) an.

i)
$$A = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 < 9\},\$$

ii)
$$B = \{(x, y) \in \mathbb{R}^2 : \sin(x) = 1, \cos(y) = 1\},\$$

iii)
$$C = \{(x, y, z) \in \mathbb{R}^3 : -5x + y \in \mathbb{R}\},\$$

iv)
$$D = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le 2z, z \in [0, 2] \}.$$

6. Aufgabe 10 Punkte

Gegeben seien die Menge $D:=\{(x,y)\in\mathbb{R}^2:x>-1\}$ und die Funktion $f:D\to\mathbb{R}$ durch

$$f(x,y) = \begin{cases} \frac{y \ln(x+1)}{y^2 + (\ln(x+1))^2}, & y \neq 0, \\ 0, & y = 0. \end{cases}$$

- i) Zeigen Sie:
 - (a) Es gilt $\lim_{y\to 0} f(1,y) = 0$ und $\lim_{x\to 1} f(x,0) = 0$.
 - (b) Es gilt $\lim_{n\to\infty} (\frac{1}{n}, \ln(\frac{1}{n} + 1)) = (0, 0)$.
 - (c) Die Funktion f ist unstetig in (0,0).
 - (d) Die Funktion f ist in (0,0) und in (0,1) nach x und y partiell differenzierbar.
- ii) Folgt aus Teil (a) bereits, dass f in (1,0) stetig ist? Ist die Funktion in (0,0) differenzierbar?

7. Aufgabe 10 Punkte

Seien \vec{v} , $\vec{w}: D \to \mathbb{R}^3$, $D \subset \mathbb{R}^3$, zwei stetig differenzierbare Vektorfelder. Begründen Sie die folgenden Aussagen oder widerlegen Sie diese durch ein Gegenbeispiel.

- i) Besitzen \vec{v} und \vec{w} jeweils ein Potential, so hat auch $\vec{v} \cdot \vec{w}$ ein Potential.
- ii) Ist $u: D \to \mathbb{R}$ ein Potential von \vec{v} , so gilt $\int_{\gamma} \vec{v} \, ds = 0$ für eine beliebige Kurve γ in D.
- iii) Sei $u: D \to \mathbb{R}$ ein Potential von \vec{v} und sei γ die Randkurve einer glatten Fläche $F \subset \mathbb{R}^3$. Dann gilt $\int_{\gamma} \vec{v} \ ds = 0$. (Hinweis: Nutzen Sie einen Integralsatz.)
- iv) Sei D eine nichtkonvexe Menge und $\vec{v}:D\to\mathbb{R}^3$ besitze ein Potential. Dann gilt $\mathrm{rot}(\vec{v})=\vec{0}.$
- v) Seien $D = \mathbb{R}^3$ und $\phi : \mathbb{R} \to \mathbb{R}$ eine beliebige stetig differenzierbare Funktion und

$$\vec{w}(x,y,z) = (x+y+\phi(z), y^3+zx^3, z^2+x^2)^T,$$

$$\vec{v}(x,y,z) = (-x^3, -2x, 3x^2z - 1)^T.$$

Dann ist \vec{w} ein Vektorpotential von \vec{v} .