Final Exam
Compiler Design

L]

Fakultat IV

Dozenten: Dr. Biagio Cosenza, Dr. Nicolai Bull, j,gitut fir Technische Informatik

Prof. Ben Juurlink
22.02.2019

und Mikroelektronik
FG Architektur eingebetteter Systeme

First Name L.
Last Name L
Matrikelnummer :

Course of study :

O EIT (O Erasmus
Exercise 1 2 3 4 5 >
max. points 18 4 24 6 6 58

reached points

corrector

Important Instructions:

e Fill out the top of the sheet with your name, matriculation number and other data.

e The exam takes 89 minutes.

e For each exercise, you can see how many points can be achieved, for a total of 50 points.

e Write in comprehensible English, only what is asked, and highlight the final result.

e You are not allowed to use laptops, smart-phones, smart-watches and any other similar devices.

e You can not have anything but your ID, a pen, and this exam on your desk.

e Switch off your phones and other noisy gadgets.

e You can not talk to anyone during the exam.

e Cheating is punishable by a failure to pass the whole module (including the lab).

Name: Mtr.-Nr.:

1. Exercise: Lexical Analysis (18 points)
1.1 Regular Expression (8 points)
Write a Regular Expression for the following languages:
o L={a"V"n>4,m < 3}
o L ={a"b™|(n+ m) is even}
o L ={w € {0,1}*|w has at least one pair of consecutive zeros}

e L ={w € {0,1}*|w has no pair of consecutive zeros}

TUB, Fak. IV: Compiler Design, 22.02.2019

20f

Name:

Mtr.-Nr.:

1.2 DFA Minimization (10 points)
Use Hopcroft’s Algorithm to minimize the states of the following DFA. You should

(a) fill the table with all iterations of the algorithm

(b) write the final DFA

Iteration

Groups

Split on 1

Split on 2

Split on 3

TUB, Fak. IV: Compiler Design, 22.02.2019

30f

Name: Mtr.-Nr.:

2. Exercise: Syntax and Semantic Analysis (4 points)

2.1 Expression Grammar (4 points)

(a) Write a grammar matching simple arithmetic expressions
e supporting the operators +, -, * and /,
e supporting parenthesized expressions (like (1+2)*3),
e using num as the number terminal,

e and taking into account precedence (* and / have higher precedence than + and -) and
associativity (left to right), in the sense that the resulting parse tree should exhibit correct
grouping.

(b) Is this language regular? Justify your answer. (A formal proof is not necessary.)

TUB, Fak. IV: Compiler Design, 22.02.2019 4 of

Name:

Mtr.-Nr.:

3. Exercise: Intermediate Representation (24 points)

3.1 Very Busy Expressions (10 points)

An expression a op b is said to be very busy at program point P if along every control flow path from
P there is an expression a op b before a redefinition of a or b.

Show how very busy expressions may be calculated using iterative dataflow analysis by filling out the
following table. The Dominators analysis is provided as a reference for the expected format. If you
use gen and kill sets, don’t forget to precisely define what they contain for this analysis.

Dominators Very Busy Expression
Domain Sets of blocks
Direction Forward
Meet Intersection

Transfer Func.

fe(z) =xU{B}

Equations OUT|B] = fg(IN[B])

IN[B] = Npepmed(s) OUTIP]
Initialization OUT|P] = all blocks
Boundary OUT|[Entry] =0

TUB, Fak. IV: Compiler Design, 22.02.2019

50f

Name: Mtr.-Nr.:

3.2 Control Flow Graph and Dominator Tree (14 points)
Given the following Control-Flow-Graph

(a) What nodes are dominated by node 57
(b) What nodes are strictly dominated by node 57

(c) Draw the dominator tree.

TUB, Fak. IV: Compiler Design, 22.02.2019

60f

=W N =

Name: Mtr.-Nr.:

4. Exercise: Runtime, Code Generation, Registry Allocation (6 points)

4.1 Registry Allocation (6 points)

Given the code:

b =a 4+ 2;
¢ =Db % b;
b=c¢+ 1;

return b x a;

(a) Write the set of live variables before each instruction (i.e., IN(7)).

(b) Draw the register interference graph.

(c) Assume to have only two physical registers, find an optimal registry allocation.

TUB, Fak. IV: Compiler Design, 22.02.2019

70f

Name: Mtr.-Nr.:

5. Exercise: Instruction Scheduling, Code Transformations (6 points)

5.1 Optimization (6 points)

The original code shown on the left has been transformed into the code on the right by inlining the
muldiv function into the test function. Starting from the inlined variant, name and apply at least
three additional optimizations. Show the new code after each applied optimization.

/// Original code /// After inlining
static unsigned muldiv(unsigned test(unsigned arg) {
unsigned argl, unsigned arg2, unsigned arg = argl, arg2 = 16, op = 1;
unsigned op) { if (op == 0) {
if (op == 0) { retval = argl * arg2;
return argl * arg2; } else {
} else { retval = argl / arg2;
return argl / arg2; }
T return retval;
} }

unsigned test(unsigned arg) {
return muldiv(arg, 16, 1);

}

TUB, Fak. IV: Compiler Design, 22.02.2019 8 of

