1. Aufgabe 11 Punkte

Aus

$$\begin{vmatrix}
-2 - \lambda & 1 & 0 \\
-4 & 2 - \lambda & 0 \\
-8 & 4 & 4 - \lambda
\end{vmatrix} = 0$$

$$\implies 0 = (-2 - \lambda)(2 - \lambda)(4 - \lambda) - (4 - \lambda)(-4)$$

$$= (4 - \lambda)((-2 - \lambda)(2 - \lambda) + 4)$$

$$= (4 - \lambda)(\lambda^2 - 4 + 4)$$

$$= (4 - \lambda)\lambda^2$$

ergeben sich der einfache Eigenwert 4 und der doppelte Eigenwert 0.

Der Eigenraum zum Eigenwert 4 ergibt sich als Raum der Lösungen $\vec{v} \in \mathbb{R}^3$ von

$$\begin{pmatrix} -6 & 1 & 0 \\ -4 & -2 & 0 \\ -8 & 4 & 0 \end{pmatrix} v = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Der eindimensionale Eigenraum lässt sich durch Hinschauen schnell finden:

$$\operatorname{span}\left\{ \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

Der Eigenraum zum Eigenwert 0 ergibt sich als Raum der Lösungen $v \in \mathbb{R}^3$ von

$$\begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -8 & 4 & 4 \end{pmatrix} v = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

anhand der folgenden Gauß-Schritte

$$\begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -8 & 4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & 0 \\ -2 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

zum ebenfalls nur eindimensionalen Eigenraum span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \right\}$.

Folglich ist ein weiterer, linear unabhängiger Hauptvektor h zum Eigenwert 0 zu suchen:

$$\begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ -8 & 4 & 4 \end{pmatrix} \vec{h} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

Man findet als eine inhomogene Lösung (2. und 3. Spalte anschauen):

$$\vec{h} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Allgemein:

$$\vec{h} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + c \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad c \in \mathbb{C}$$

Die gesuchte Lösung schreibt sich wie folgt:

$$\vec{y}(t) = C_1 e^{4t} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \end{pmatrix}$$

mit Konstanten C_1, C_2, C_3 mit

$$\vec{y}(1) = C_1 e^4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \end{pmatrix} = C_1 e^4 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

Es folgt $C_1 = 0$, $C_2 = -1$, $C_3 = 1$, somit ist

$$\vec{y}(t) = -\begin{pmatrix} 1\\2\\0 \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} 0\\1\\-1 \end{pmatrix} + t \begin{pmatrix} 1\\2\\0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} -1\\-1\\-1 \end{pmatrix} + t \begin{pmatrix} 1\\2\\0 \end{pmatrix}$$

die gewünschte Lösung des AWPs.

Mit $X(s) := \mathcal{L}[x](s)$ ergibt sich im Laplace-Bereich

$$s^{2}X - 3 + sX - 2X = e^{-3s}$$
$$(s^{2} + s - 2)X = 3 + e^{-3s}$$
$$X = \frac{3}{s^{2} + s - 2} + \frac{e^{-3s}}{s^{2} + s - 2}$$

Es ist

$$s^2 + s - 2 = (s - 1)(s + 2),$$

damit Partialbruchzerlegung (mit Zuhaltemethode):

$$\frac{1}{(s-1)(s+2)} = \frac{1}{3} \cdot \frac{1}{s-1} - \frac{1}{3} \cdot \frac{1}{s+2}$$

Rücktransformation:

$$X(s) = \frac{1}{3}e^{-3s} \left(\frac{1}{s-1} - \frac{1}{s+2}\right) + \frac{1}{s-1} - \frac{1}{s+2}$$
$$= \frac{1}{3}e^{-3s} \mathcal{L}\left[e^t - e^{-2t}\right](s) + \mathcal{L}\left[e^t - e^{-2t}\right](s)$$
$$x(t) = \frac{1}{3}u_3(t)\left(e^{t-3} - e^{-2(t-3)}\right) + e^t - e^{-2t}$$

a) Mit y(x,t) = X(x)T(t) hat man

$$X''(x)T(t) - \frac{1}{4}X(x)T''(t) = 0.$$

Für $y(x,t) \neq 0$ ist Division der DGL durch Produkt X(x)T(t) und Separation statthaft:

$$\frac{X''(x)}{X(x)} - \frac{1}{4} \frac{T''(t)}{T(t)} = 0 \implies \frac{X''(x)}{X(x)} =: \lambda = \frac{1}{4} \frac{T''(t)}{T(t)}$$

DGLn in X und T:

$$X''(x) - \lambda X(x) = 0,$$
 $T''(t) - 4\lambda T(t) = 0.$

Nicht-konstante, in x und in t periodische Lösungen kann es nur für $\lambda < 0$ geben.

Es ist dann für jedes $\lambda \in \mathbb{R}^-$

$$X(x) = c_1 \cos \sqrt{-\lambda}x + c_2 \sin \sqrt{-\lambda}x,$$

$$T(t) = c_3 \cos 2\sqrt{-\lambda}t + c_4 \sin 2\sqrt{-\lambda}t$$

Die Bedingung $y(0,t)=y(\pi,t)=0$ bedeutet $X(0)=X(\pi)=0$. Daraus folgt $c_1=0$ sowie $\sin \pi \sqrt{-\lambda}=0$. Damit ist λ eins der Werte λ_n mit

$$\sqrt{-\lambda_n} = n \quad \text{mit} \quad n \in \mathbb{N}, \ n > 0$$
$$\lambda_n = -n^2$$

Die Bedingung $y_t(x,0) = 0$ bedeutet T'(0) = 0, mit $T'(t) = -c_3\sqrt{-\lambda}\sin 2\sqrt{-\lambda}t + c_4\sqrt{-\lambda}\cos 2\sqrt{-\lambda}t$ ist $c_4 = 0$.

Die Funktionen y sind von der Form

$$A_n \sin nx \cos 2nt$$
, $A_n \in \mathbb{R}$.

b) Mit der Superposition

$$y(x,t) = \sum_{n=1}^{\infty} A_n \sin nx \cos 2nt$$

ist

$$y(x,0) = \sum_{n=1} A_n \sin nx = 3\sin 2x + 6\sin 4x$$

 $\implies A_2 = 3, A_4 = 6, A_k = 0 \text{ für } k = 1, 3 \text{ oder } k \ge 5.$

Damit lautet die gesuchte Lösung

$$y(x,y) = 3\sin 2x\cos 4t + 6\sin 4x\cos 8t.$$

a) Es ist

$$y' = e^x y^2.$$

Für $x, y \in \mathbb{R}$ ist die rechte Seite stetig nach x und y differenzierbar, damit existiert nach dem EES ein Intervall um die Anfangsstelle 0, in dem es genau eine Lösung des AWPs gibt.

b) Mit TdV ergibt sich

$$y'y^{-2} = e^{x}$$

$$-y^{-1} = e^{x} + C, \qquad C \in \mathbb{R}$$

$$y = -\frac{1}{e^{x} + C}, \qquad C \in \mathbb{R}$$

Aus y(0) = 1 folgt C = -2. Damit ist

$$y = -\frac{1}{e^x - 2} = \frac{1}{2 - e^x}.$$

Der maximale Definitionsbereich wird durch die Nullstelle des Nenners $2-\mathrm{e}^x$ bestimmt:

$$2 - e^x = 0 \implies e^x = 2 \implies x = \ln 2.$$

Die Anfangsstelle 0 liegt im Intervall] $-\infty, \ln 2[.$ Die Lösung des AWPs ist somit durch

$$y:]-\infty, \ln 2[\to \mathbb{R}, x \mapsto \frac{1}{2-e^x}]$$

gegeben.

5. Aufgabe 10 Punkte

a) Man wendet die Produktregel rückwärts an: Aus

$$x^2y'' + 2xy' + \lambda x^{-2}y = 0.$$

folgt die DGL in selbstadjungierter Form

$$\left(x^2y'\right)' + \lambda x^{-2}y = 0.$$

b) In die selbstadjungierte Form werden die Eigenfunktionen y_k eingesetzt:

$$(x^2 y_k')' + \lambda_k x^{-2} y_k = 0$$

$$\left(x^2 \cdot \cos \frac{k\pi}{x} \cdot k\pi (-x^{-2})\right)' + \lambda_k x^{-2} \sin \frac{k\pi}{x} = 0$$

$$-k\pi \left(\cos \frac{k\pi}{x}\right)' + \lambda_k x^{-2} \sin \frac{k\pi}{x} = 0$$

$$-(k\pi)^2 x^{-2} \sin \frac{k\pi}{x} + \lambda_k x^{-2} \sin \frac{k\pi}{x} = 0$$

$$-(k\pi)^2 + \lambda_k = 0$$

Es folgt $\lambda_k = k^2 \pi^2$: Die Eigenfunktion y_k hat den Eigenwert $k^2 \pi^2$.

c) Aus der selbstadjungierten Form liest man die Gewichtsfunktion $\frac{1}{x^2}$ ab. Orthogonalität bedeutet, dass gilt

$$\int_{1/2}^{1} y_k(x) y_l(x) \frac{1}{x^2} dx = 0.$$

Es ist mit der Substitution $t := \frac{1}{x}$

$$\int_{1/2}^{1} y_k(x) y_l(x) \frac{1}{x^2} dx = \int_{1/2}^{1} \sin \frac{k\pi}{x} \cdot \sin \frac{l\pi}{x} \cdot \frac{1}{x^2} dx$$

$$= -\int_{2}^{1} \sin k\pi t \sin l\pi t dt = \frac{1}{2} \int_{1}^{2} (\cos(k-l)\pi t - \cos(k+l)\pi t) dt$$

$$= -\frac{1}{2} \left[\frac{1}{(k-l)\pi} \sin(k-l)\pi t - \frac{1}{(k+l)\pi} \sin(k+l)\pi t \right]_{t=1}^{t=2} = 0,$$

weil die Sinusfunktionen stets an Vielfachen von π ausgewertet werden. Die Eigenfunktionen y_k und y_l sind für $k \neq l$ tatsächlich orthogonal.

6. Aufgabe 10 Punkte

a) Falsch.

Zwei mögliche Begründungen:

 α) Die Zahl 0 muss demnach eine dreifache Nullstelle des charakteristischen Polynoms dieser DGL sein. Das ist aber nicht möglich, da die DGL nur von 2. Ordnung ist.

 β) Die Lösungen x und x^2 besitzen die Wronski-Determinante $\left|\begin{smallmatrix} x & x^2 \\ 1 & 2x \end{smallmatrix}\right|$ mit dem Wert x^2 . Die Wronski-Determinante verschwindet aber an einer Stelle und müsste dann sogar überall verschwinden, was nicht der Fall ist.

b) Wahr.

Die Systemmatrix besitzt den doppelten Eigenwert 0. Da er keinen negativen Realteil hat, sind etwaige Gleichgewichtspunkte allenfalls stabil, aber nicht asymptotisch stabil.

Tatsächlich ist jeder Punkt des \mathbb{R}^2 ein stabiler, aber nicht attraktiver Gleichgewichtspunkt.

c) Falsch.

Im Laplacebereich hat man $F(s)\frac{e^{-s}}{s}=F(s)$, daraus folgt nur F(s)=0, mit dem Satz von Lerch also f(t)=0: f ist dann die Nullfunktion, welche aber konstant ist.

d) Wahr.

Ein solches y(x) müsste von der Form $C_1 \cos x + C_2 \sin x$ sein, aus den Randwerten folgen die widersprüchlichen Bedingungen $C_1 = 1$ und $C_1 = -1$. (Der Wert von C_2 bleibt unbestimmt.)

e) Falsch.

Jede Bessel-Funktion J_k mit $k \in \mathbb{Z}$ ist nicht-konstant, stetig und besitzt mehr als eine Nullstelle, somit ist sie nicht monoton fallend.