

Prof. Dr.-Ing. Jörg Raisch M.Sc. Germano Schafaschek Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung "Ereignisdiskrete Systeme"



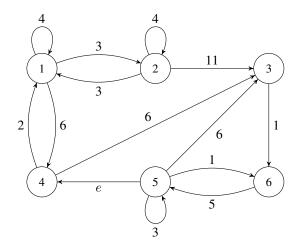
# Final written exam in course "Discrete Event Systems"

11.03.2021

Maximum score: 40 points

# **Question 1 (10 points)**

Consider a max-plus matrix A, whose precedence graph  $\mathcal{G}(A)$  is shown in Figure 1.



**Figure 1:** Precedence graph  $\mathcal{G}(A)$  for Question 1.

The following powers of matrix A are given:

## a) (2 points)

Determine an eigenvalue  $\lambda$  of A. Is this eigenvalue unique? Justify your answer.

b) (2 points)

Provide the critical graph of A and indicate its maximal strongly connected (m.s.c.) subgraphs.

c) (3 points)

Let

$$Q^{+} = Q \otimes Q^{*} = \begin{bmatrix} e & -1 & -8 & -2 & -6 & -5 \\ -1 & e & -9 & -3 & -7 & -6 \\ 6 & 7 & e & 4 & 2 & 3 \\ 2 & 1 & -6 & e & -4 & -3 \\ 4 & 5 & -2 & 2 & e & 1 \\ 3 & 4 & -3 & 1 & -1 & e \end{bmatrix}, \quad \text{where } Q = \operatorname{inv}_{\otimes}(\lambda) \otimes A \, .$$

Consider the vector  $v = \begin{bmatrix} 5 & 6 & 13 & 7 & 11 & 10 \end{bmatrix}'$ . Determine two linearly independent eigenvectors of A, say,  $\xi_1$  and  $\xi_2$ , for which  $\nexists \alpha_1, \alpha_2 \in \mathcal{R}$  such that  $v = \alpha_1 \xi_1 \oplus \alpha_2 \xi_2$ , where  $\mathcal{R} = \mathbb{R} \cup \{-\infty\}$ .

### d) (3 points)

Let a system be represented by a timed event graph whose transitions' earliest possible firing times can be described by x(k + 1) = Ax(k), where x(k) is the vector of the k-th firing instants and A is the matrix provided above. Consider the following statement:

"Regardless of the value of x(1), the system will eventually exhibit a \_\_\_\_\_ behavior."

Among the following options, choose the one (and only one) that correctly completes the sentence, and briefly **justify** your answer:

- nonperiodic;
- transient;
- 1-periodic;
- 2-periodic;
- 3-periodic.

#### **Question 2 (8 points)**

Consider the following languages defined over the alphabet  $\Sigma = \{\lambda, \beta\}$ :

$$\begin{split} L_1 &= \left\{ s \in \Sigma^* \, | \, \nexists \, t, u \in \Sigma^* \text{ such that } s = \lambda t \beta u \beta \right\}; \\ L_2 &= \left\{ s \in \Sigma^* \, | \, s \text{ contains the sequence } \beta \lambda \text{ at least twice and does not contain the sequence } \beta \lambda \beta \right\}. \end{split}$$

#### a) (4 points)

Provide a nonblocking deterministic finite automaton  $A_1$  such that  $L_m(A_1) = L_1$ .

b) (4 points)

Provide a nonblocking deterministic finite automaton  $A_2$  such that  $L_m(A_2) = L_2$ .

#### Question 3 (10 points)

Consider a robot modeled by the automaton R shown in Figure 2, defined over the alphabet  $\Sigma = \{a, a', b, b', c, c'\}$ . From its initial position (location I) it can visit three locations, A, B, and C; additionally, it can also visit location B directly from locations A or C. Events a, b, and c represent the arrival of the robot at locations A, B, and C, whereas a', b', and c' represent the arrival back at I when coming from A, B, and C, respectively.

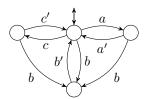


Figure 2: Automaton R modeling the robot for Question 3.

### a) (3 points)

Explain, in a short sentence, the meaning of the specification for R represented by the automaton  $A_{\text{spec}}$  in Figure 3, defined over the alphabet  $\Sigma_{\text{spec}} = \{a, b, c\}$ .

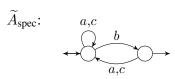


Figure 3: Automaton  $\tilde{A}_{spec}$  representing a specification for the robot of Question 3.

# b) (4 points)

Provide a deterministic finite automaton that represents the following specification:

For every time the robot goes from location A directly to location B, it can only visit location A again after visiting location C at least once.

Indicate also the alphabet over which your automaton is defined.

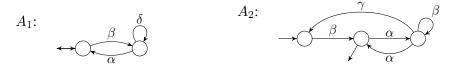
c) (3 points)

Assume that the sets of controllable and uncontrollable events of R are given by  $\Sigma_c = \{a, b, c\}$  and  $\Sigma_{uc} = \{a', b', c'\}$ , respectively. Is the language  $K = \{\varepsilon, abb', cc', bb'cbb'\}$  controllable with respect to the language L(R) generated by R? Justify your answer.

(Hint: you do not need to explicitly construct the language L(R).)

## **Question 4 (4 points)**

Obtain the parallel composition of automata  $A_1$  and  $A_2$  shown in Figure 4, defined over alphabets  $\Sigma_1 = \{\alpha, \beta, \delta\}$ and  $\Sigma_2 = \{\alpha, \beta, \gamma\}$ , respectively.



**Figure 4:** Automata  $A_1$  and  $A_2$  for Question 4.

## **Question 5 (8 points)**

Let the automaton  $A_p$  in Figure 5 (left-hand side) model the behavior of a plant to be controlled, defined over the alphabet of events  $\Sigma = \{a, b, c, d\}$ . Assume that events a and c are controllable, whereas b and d are uncontrollable. A specification for the system is represented by a certain automaton  $\widetilde{A}_{spec}$  (not explicitly provided); the automaton  $A_K = A_p \parallel \widetilde{A}_{spec}$  in Figure 5 (right-hand side) is the result of the parallel composition of  $A_p$  with  $\widetilde{A}_{spec}$ . Provide an automaton realization for the least restrictive (and nonblocking) supervisor that enforces the given specification on the plant  $A_p$ .

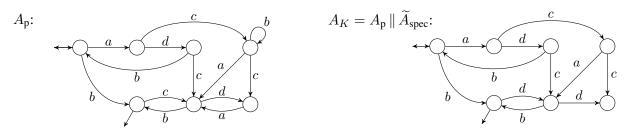


Figure 5: Automata models for Question 5.