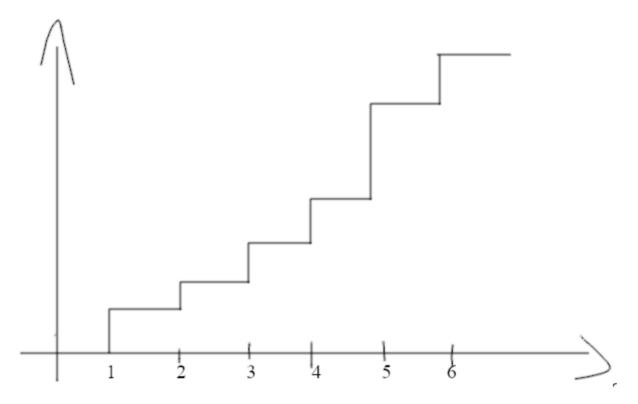
Gedächtnisprotokoll

GNT (SNT+GNT) Februar 2022

- Online (Ohne Videoüberwachung)
- Openbook, aber nur "analoge" Hilfsmittel + nicht prog. Taschenrechner


Wahrscheinlichtkeit

- 1. Komogoroff Axiome (wahr oder falsch)
 - 1. P(A) = -3
 - 2. $P(\Omega)=1-P(C)$ wenn $C\cap ar{C}$ (fehlt hier was ?)
 - 3. Sei $\Omega = A \cup ar{A}$ mit P(A) = 0.6 und $P(ar{A}) = 0.7$
- 2. Auto hat 2 Defekte. 20% kaputtes Rad, 15% kaputtes Rad und kaputte Hupe. Dass es überhaupt einen Mangel gibt, liegt bei 80%
 - 1. Mit welcher Wahrscheinlichkeit ist die Hupe kaputt?
 - 2. Sind Hupe kaputt und Rad kaputt statistisch unabhängig?
- 3. Memory Karten Spiel mit 12 Karten. 2 Kreuz, 4 Kreis, 6 Stern
 - Gleichzeitig 2 beliebe Karte gezogen. Wahrscheinlichkeit, dass 2mal Kreis gezogen wird
 - 2. Es werden 2 Karten nacheinander gezogen. Wahrscheinlichkeit, dass nicht 2 gleiche Symbole sind
 - 3. Es werden 3 Karten nacheinander gezogen. Wahrscheinlichkeit, dass die dritte Karte keine Ecke hat (Was ist damit gemeint ?)

Verteilungsfunktion

1. Definition Korellationskoeffizient gegeben. X sei N(0,2) (Gauß mit $\mu_x=0$ und $\sigma_x=2$). Berechne Korellationskoeffizient für Y=aX-b mit $a,b\in\mathbb{R}, a\neq 0$

2. Gezeichnete Verteilungsfunktion von einem Würfel gegeben

- 1. Ist es ein fairer Würfel?
- 2. Welche Wahl wird am häufigsten gewürfelt?
- 3. Skizze VDF
- 3. Gegeben Z = X + Y
 - 1. Erwartungswer ${\cal E}[{\cal Z}]$ über Definition herleiten
 - 2. Leistung von Z bestimmen
 - 3. Erwartungswert, wenn $Z = X \cdot Y$ und X,Y statistisch unabhängig sind

Störreduktion

- 1. R_{XY} (Wiener-Hopf Gleichung) eines Optimalfilters gegeben
 - 1. Welche Filterklasse
 - 2. Skizze + Ist dieser realisierbar
 - 3. Werte für $R_{YY}(0), R_{YY}(1), R_{YX}(0), R_{YX}(1)$ gegeben. Berechne optimale Filterkoeffizierenten

- 2. Prozess X gegeben mit S_{XX} . Zeige dass Folge lpha X ein LDS von $lpha^2$ S_{XX} hat.
- 3. Rauschgestörtes Signal gegeben Y=X+N, nicht korreliert, R_{XX} und R_{NN} gegeben
 - 1. Welche Arten von Signalen sind X und N
 - 2. Leite S_{YX} und S_{YY} mit Wiener-Chintchin Beziehung her
 - 3. nicht kausales Filter. Wie sieht die Übertragungsfunktion aus ?

Klassifikation

- 1. Gegeben $p_X(x|\omega_1)$ mit LaPlace Verteilung. Außerdem Trainingsdaten D=-2,1,0,0,2
 - 1. Leite Maximum Likelyhood Gleichung für den Parameter der LaPlace $p_x(x)=rac{\lambda}{2}e^{-\lambda|x|}$
 - 2. Bestimmte $\hat{\lambda}$ aus den Messdaten
 - 3. Mittelwert für geschätzten Parameter aus 2.)
- 2. Gegeben sind 2 Klassen mit $P(\omega_1)=rac23, P(\omega_2)=rac13, P(x|\omega_1)=rac12e^{-|x|}, P(x|\omega_2)=rac12e^{-|x-\mu_x|}$
 - 1. Skizziere Dichtefunktion für $\mu_x=5$
 - 2. Bestimmte Entscheidungsgrenze x_E für \mu_x=5