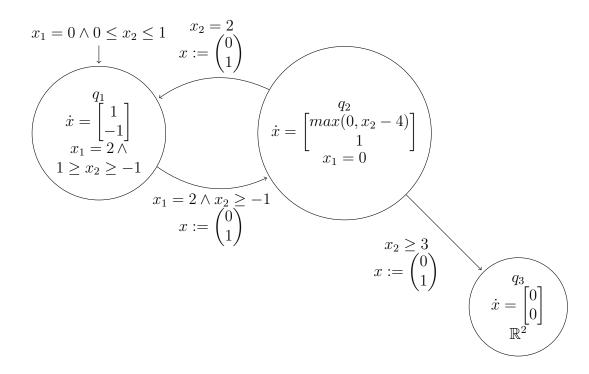
Hybrid Systems Gedächtnisprotokoll


Juli 2022

Q1 (7 pts)

Consider the relation $R \supseteq \mathbb{R} \times \mathbb{R}$ and $k \in \mathbb{Z}$. $R = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid \exists k \in \mathbb{Z} : a = 5^k b\}$

Is R an equivalence relation? Justify.

Q2 (33 pts)

- a) (8 pts) Decide if swichting is:
 - necessary and possible
 - necessary, but not possible
 - not necessary and possible
 - neither possible nor necessary

For
$$(q_1, \begin{bmatrix} 1\\-1 \end{bmatrix}), (q_2, \begin{bmatrix} 0\\2 \end{bmatrix}), (q_2, \begin{bmatrix} 0\\3 \end{bmatrix}), (q_2, \begin{bmatrix} 0\\4 \end{bmatrix}).$$

b) (8 pts) Is HA deterministic? Justify.

c) (9 pts) Is HA blocking? Justify.

d) (8 pts) Provide an execution of HA from t=0 to t=7. With initial condition $(q_1, \begin{bmatrix} 0\\1 \end{bmatrix})$. Show the evolution of discrete and continuous states and specify the corresponding hybrid time set.

Q3 (19 pts)

Is the switched linear system S_{σ} GUAS? Justify.

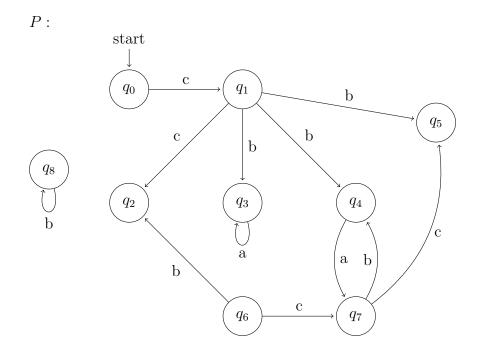
a) N=2
$$A_1 = \begin{bmatrix} -1 & 5 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 $A_2 = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -5 \end{bmatrix}$
b) N=10 $A_k = (-5)^k$, $k \in \{1, 2, 3, ..., 10\}$
c) N=2 $A_1 = \begin{bmatrix} -3 & 2 \\ 0 & -2 \end{bmatrix}$ $A_2 = \begin{bmatrix} 1 & 3 \\ -1 & -2 \end{bmatrix}$

Q4 (8 pts)

Consider the switched linear system $S_{\sigma} : \dot{x}(t) = A_{\sigma(t)}x(t)$ with $\sigma : \mathbb{R}^+ \to \{1, 2, 3, 4, 5\}$. Answer the question; no justification needed.

• if $\forall \sigma : A_{ij} = A_{ji}$ the system is GUAS.

- if S_{σ} is GUAS $\Rightarrow A_{ij} = A_{ji} \forall i, j \in \{1, ..., 5\}$
- if there is a JQLF for every $A_{\sigma}: S_{\sigma}$ is GUES
- if S_{σ} is GUAS there is a JQLF for every A_{σ}


Q5 (22 pts)

Consider the system $\Sigma = (\mathbb{N}_0, W, \mathcal{B})$ with $W = (a, b), \mathcal{B} = \{aaaaaaa..., bbaaaaa..., bbbbbaaaa..., bbbbbbaaaa..., ...\}$

- Provide a state machine graphically
- Time invariant / strictly time invariant?
- Is Σ 2-complete ?

Q6 (11 pts)

Consider the state machine P.

- a) (3pts) Provide reachable part P'.
- b) (3pts) Provide a nonblocking P" with the same behavior as P'.
- c) (5pts) Is P" past-induced? Justify.