Technische Universität Berlin

Fakultät II – Institut für Mathematik Prof. Frank WS 03/04 07.04.2004

April – Klausur (Verständnisteil) Integraltransformationen und partielle Differentialgleichungen

Name:		Vorname:						
MatrNr.:		Studi	engang	:				
Neben einem handbeschriebenen le zugelassen. Taschenrechner und Lösungen sind in Reinschrift au bene Klausuren können nicht ge	d Forn f A4 E	nelsam Blätteri	mlunge n abzug	en sind	nicht z	zugelas	sen. Die	
Dieser Teil der Klausur umfasst d Rechenaufwand mit den Kenntni wenn nichts anderes gesagt ist, in	issen a	aus der	Vorles	sung lö	sbar se	ein. Ge	0	
Die Bearbeitungszeit beträgt ein	e Stu	nde.						
Die Gesamtklausur ist mit 32 von beiden Teile der Klausur mindest					,	•		
Korrektur								
	1	2	3	4	5	6	Σ	

1. Aufgabe 7 Punkte

Bestimmen sie die reelle Fourierreihe der Funktion $f(x) = 2\sin(x)\cos(5x)$.

2. Aufgabe 8 Punkte

Zeigen Sie mittels vollständiger Induktion

$$L\left[\frac{t^{n-1}}{(n-1)!}\right](s) = \frac{1}{s^n}, \quad Re(s) > 0, \quad n = 1, 2, 3, \dots$$

3. Aufgabe 7 Punkte

- a) Die Z-Transformierte der reellen Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ sei $Z[a_n](z)=F^*(z)$. Bestimmen Sie für $\alpha>0$ $Z[\alpha a_n](z)$ und $Z[a_n+\alpha](z)$ mittels $F^*(z)$.
- b) Die Z-Transformierte der reellen Zahlenfolge $(a_n)_{n\in\mathbb{N}}$ konvergiere für $|z|>r\geq 0$. Bestimmen Sie den Konvergenzbereich von $Z[\alpha a_n](z)$ und $Z[a_n+\alpha](z)$.

4. Aufgabe 8 Punkte

Das Randeigenwertproblem $y'' - \lambda y = 0$, y(0) = y(2) = 0 besitzt die Eigenwerte $\lambda_k = -\frac{k^2\pi^2}{4}$, $k \in \mathbb{N}$. Welche der folgenden Randwertprobleme besitzen eine nichttriviale Lösung:

a)
$$y'' - \frac{9\pi^2}{4}y = 0$$
, $y(0) = y(2) = 0$,

b)
$$y'' + 4\pi^2 y = 0$$
, $y(0) = y(2) = 0$,

c)
$$y'' + 7\pi^2 y = 0$$
, $y(0) = y(2) = 0$?

5. Aufgabe 4 Punkte

Betrachtet werden die Schwartzfunktionen f und g. Beweisen oder widerlegen Sie die folgende Aussage mittels des Faltungssatzes der Fourierformation

$$F[f' * g](\omega) = F[f * g'](\omega).$$

6. Aufgabe 6 Punkte

Betrachten Sie das Randwertproblem für die Potentialgleichung $u_{xx} + u_{yy} = 0$ auf dem Kreis K mit Mittelpunkt (0,0) und Radius R = 3 und der Randfunktion g(x,y) = 36. Prüfen Sie, ob die Funktionen $a(x,y) = 4(x^2 + y^2)$ oder b(x,y) = 36 dieses Randwertproblem lösen.