

Kontinuumsmechanik

Sommersemester 2015

Klausur vom 04.08.2015

Name, Vorname	Matrikelnummer
Studiengang	
Es ist erlaubt, eine handgeschriebene Formelsammlung in DIN A4-Blattes zu benutzen. Andere Hilfsmittel sind na auf hingewiesen, dass keinerlei elektronische Hilfsmittel insbesondere Taschenrechner, Laptops und Handys.	icht erlaubt. Es wird ausdrücklich dar-
Ich bestätige meine Prüfungsfähigkeit.	

Aufgabe	Т	A1	A2	A3	A4	Σ
Punkte	10	10	11	11	8	50
erreichte Punkte						
Handzeichen						

vorgesehenen Kästen ein. Separat abgegebene Blätter werden nicht bewertet.

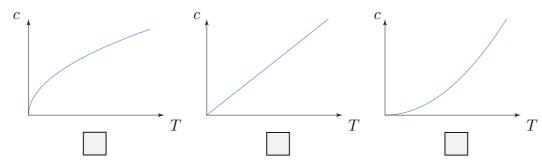
Theorieaufgaben

[10 Punkte]

Aufgabe T1

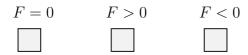
[1 Punkt]

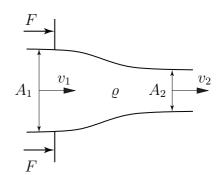
Wie ist der qualitative Zusammenhang zwischen der Vorspannkraft T und der Wellenausbreitungsgeschwindigkeit c bei einer Saite mit konstanter Masse pro Länge μ ? Kreuzen Sie den richtigen Verlauf an.



Aufgabe T2 [1 Punkt]

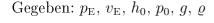
Eine ideale Flüssigkeit strömt wie skizziert durch ein Rohr mit variablem Querschnitt. Kreuzen Sie die richtige Aussage für die Kraft F an, die das System im Gleichgewicht hält.

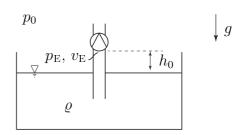




Aufgabe T3 [1 Punkt]

Eine Pumpe soll benutzt werden, um eine ideale Flüssigkeit wie abgebildet aus dem offenen Reservoir gegen die Schwerkraft zu fördern. In welcher Höhe h_0 muss die Pumpe angebracht werden, wenn der Druck am Einlauf der Pumpe $p_{\rm E}$ und die Fließgeschwindigkeit $v_{\rm E}$ betragen soll und der Umgebungsdruck einheitlich p_0 beträgt?





Nebenrechnung:		
$h_0 =$		

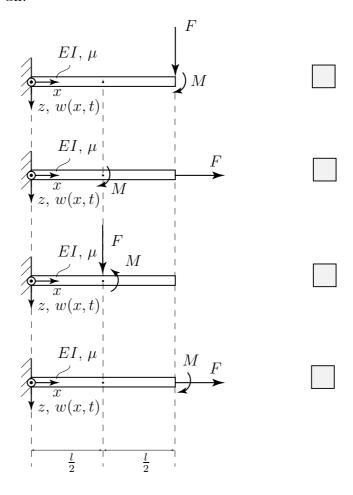
Kontinuumsmechanik Klausur vom 04.08.2015

Aufgabe T4 [1 Punkt]

Für ein mechanisches System liefert das Prinzip von Hamilton folgenden Ausdruck:

$$\delta \int_{t_0}^{t_1} \frac{1}{2} \int_{0}^{l} \left(\mu \dot{w}^2 - EIw'' - Fw'^2 \right) dx dt + \int_{t_0}^{t_1} M \delta w'(l, t) dt = 0.$$

Für welche(s) der nachfolgend skizzierten Systeme ergibt sich dieser Ausdruck im Prinzip von Hamilton? Kreuzen Sie an.



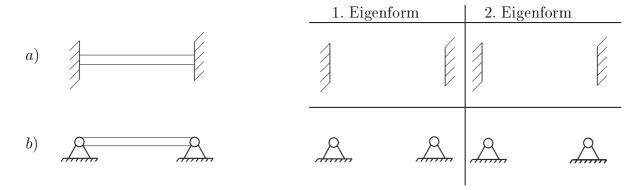
Aufgabe T5 [2 Punkte]

Geben Sie alle geometrischen und dynamischen Randbedingungen für den skizzierten Euler-Bernoulli-Balken an.



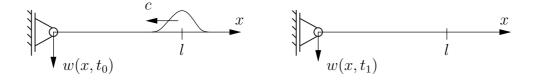
Aufgabe T6 [2 Punkte]

Skizzieren Sie für die beiden Euler-Bernoulli-Balken jeweils die erste und die zweite Eigenform.



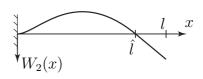
Aufgabe T7 [1 Punkt]

Eine Transversalwelle läuft in einer Saite mit der Wellenausbreitungsgeschwindigkeit c auf die Lagerung bei x=0 zu. Ihr Maximum befindet sich zur Zeit $t_0=0$ bei x=l. Skizzieren Sie im rechten Diagramm die Verschiebung $w(x,t_1)$ zur Zeit $t_1=\frac{2l}{c}$.

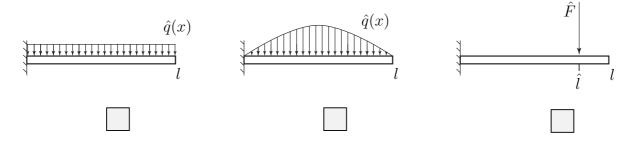


Aufgabe T8 [1 Punkt]

Ein einseitig fest eingespannter Euler Bernoulli-Balken besitzt die abgebildete 2. Eigenform $W_2(x)$ bei der zweiten Eigenkreisfrequenz ω_2 und wird mit einer Streckenlast $q(x,t) = \hat{q}(x)\cos(\omega_2 t)$ bzw. mit einer Einzellast $F(t) = \hat{F}\cos(\omega_2 t)$ zu Schwingungen angeregt.

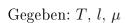


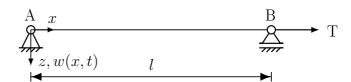
Kreuzen Sie die Belastung(en) an, die dabei nicht zu Resonanz führt/führen.



Aufgabe 1 [10 Punkte]

Die skizzierte Saite (Länge l, Masse pro Länge μ) wird durch die Kraft T vorgespannt.





a) Geben Sie die Feldgleichung und die Randbedingungen an. Wie groß ist die Wellenausbreitungsgeschwindigkeit c?

Ergebnisse:			

b) Bestimmen Sie die Eigenkreisfrequenzen.

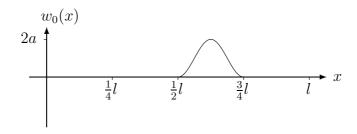
Nebenrechnung:	
Eigenkreisfrequenzen:	

c) Es seien nun die folgenden Anfangsbedingungen für t=0 gegeben:

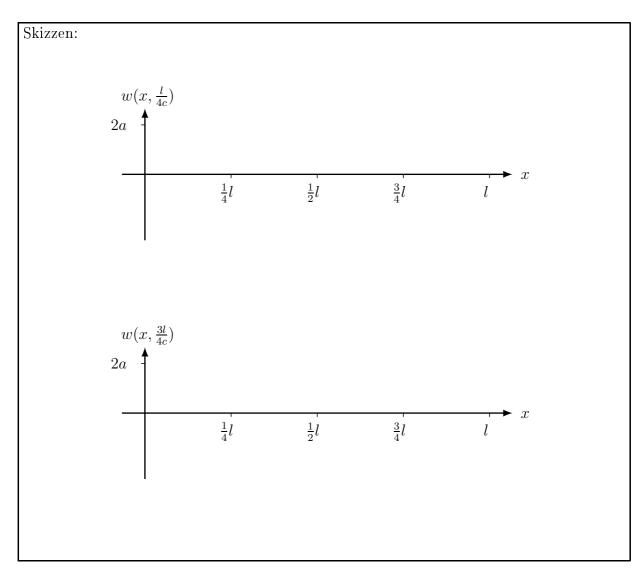
$$w(x,0) = w_0(x) = \begin{cases} -a\cos\left[8\pi(\frac{x}{l} - \frac{1}{2})\right] + a & \text{für } \frac{1}{2}l < x < \frac{3}{4}l\\ 0 & \text{sonst} \end{cases}$$

$$\dot{w}(x,0) = v_0(x) = 0$$

Skizze für $w_0(x)$:



Die Wellenausbreitungsgeschwindigkeit c wird nun als bekannt vorrausgesetzt. Skizzieren Sie die Auslenkung der Saite zum Zeitpunkt t=l/4c und zum Zeitpunkt t=3l/4c.



d) Für kleine Zeiten t kann die Verschiebung w(x,t) mit der Formel

$$w(x,t) = \frac{1}{2} \left[w_0(x - ct) + w_0(x + ct) + \frac{1}{c} \int_{x - ct}^{x + ct} v_0(\xi) d\xi \right]$$

berechnet werden. Bis zu welcher Zeit t^* ist diese Lösung gültig? Geben Sie w(x, l/8c) an.

Nebenrechnung:

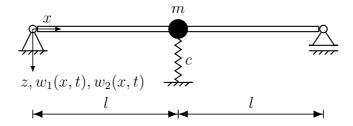
 $t^* =$

w(x, l/8c) =

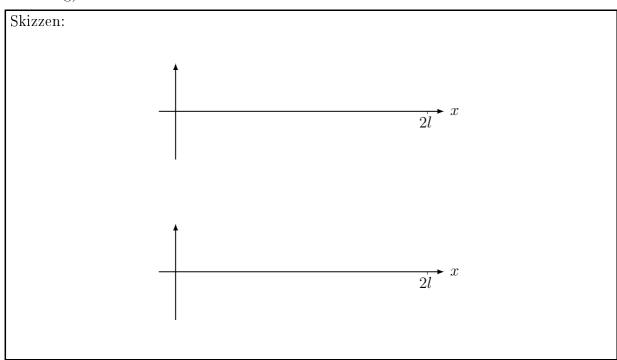
Aufgabe 2 [11 Punkte]

Die Durchbiegung des skizzierten Balkens (Länge 2l, Masse pro Länge μ , Biegesteifigkeit EI) wird im Bereich $0 \le x \le l$ durch $w_1(x,t)$ und im Bereich $l \le x \le 2l$ durch $w_2(x,t)$ beschrieben. Der Balken wird an der Stelle x = l durch eine Feder (Federsteifigkeit c, entspannt für $w_1(l,t) = w_2(l,t) = 0$) gestützt und trägt an dieser Stelle eine Punktmasse m.

Gegeben: EI, l, μ , m, c



a) Skizzieren Sie die zwei Schwingformen mit den niedrigsten Eigenkreisfrequenzen (ohne Rechnung).



b) Geben Sie die Feldgleichungen für $w_1(x,t)$ im Bereich $0 \le x \le l$ und $w_2(x,t)$ im Bereich $l \le x \le 2l$ an.

Feldgleichungen:			

Nebenrechnu	ıng:			
	_			
Dand und II	L anna nachadin			
Rand und O	bergangsbedin	ıgungen.		
ine obere Scl	ie mit der Ansa hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Scl	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			
eine obere Sch $c = 0$.	hranke für die			

- e) Die jeweils niedrigste Eigenkreisfrequenz wird für die Fälle
 - m = 0 und c = 0 mit $\widehat{\omega}_1$
 - m > 0 und c = 0 mit $\overline{\omega}_1$
 - m = 0 und c > 0 mit $\widetilde{\omega}_1$

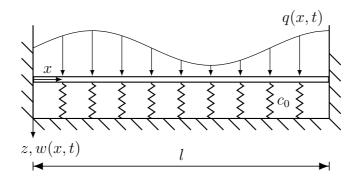
bezeichnet. Kreuzen Sie die richtige(n) $\operatorname{Aussage}(n)$ an.

Nebenrechnung:	
$\widehat{\omega}_1 < \overline{\omega}_1$	$\widehat{\omega}_1 < \widetilde{\omega}_1$
$\widehat{\omega}_1 = \overline{\omega}_1$ [$\widehat{\omega}_1 = \widetilde{\omega}_1$ $\widehat{\omega}_1 > \widetilde{\omega}_1$ $\widehat{\omega}_1$
$\widehat{\omega}_1 > \overline{\omega}_1$	$\widehat{\omega}_1 > \widetilde{\omega}_1$

Aufgabe 3 [11 Punkte]

Gegeben ist der skizzierte beidseitig fest eingespannte schlanke Euler-Bernoulli Balken (Länge l, Masse pro Länge μ , Biegesteifigkeit EI). Der Balken ist elastisch gebettet (Bettungssteifigkeit c_0) und wird durch eine Streckenlast q(x,t) belastet. Mit dem Prinzip von Hamilton sind die Feldgleichung sowie die Randbedingungen zu bestimmen.

Gegeben: $l, \mu, EI, c_0, q(x,t)$



a) Geben Sie die kinetische Energie T, die potentielle Energie U sowie die virtuelle Arbeit δW der potentiallosen Kräfte und Momente an.

$$T =$$

$$U =$$

$$\delta W =$$

b) Geben Sie die geometrischen Randbedingungen an.

geometrische Randbedingungen:

Nebenrechnung:		
Ergebnisse:		

c) Bestimmen Sie mit dem Prinzip von Hamilton die Feldgleichung und -falls existierend- die

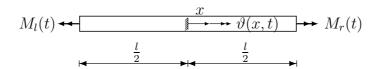
Aufgabe 4 [8 Punkte]

Gegeben ist der skizzierte freie Torsionsstab (Länge l, Dichte ρ , Schubmodul G, Polares Flächenträgheitsmoment I_p), der an seinem linken Ende durch das Moment $M_l(t)$ und an seinem rechten Ende durch das Moment $M_r(t)$ belastet wird.

Hinweis: $\sin(-\alpha) = -\sin(\alpha)$ und $\cos(-\alpha) = \cos(\alpha)$.

Benutzen Sie das vorgegebene Koordinatensystem.

Gegeben: $l, \rho, G, I_p, M_l(t), M_r(t)$



a) Geben Sie die Feldgleichung und die Randbedingungen für die Torsionsschwingung $\vartheta(x,t)$ an.

Nebenrechnung:

Ergebnisse:

b) Bestimmen Sie für den Fall der freien Schwingung $(M_l(t) = M_r(t) = 0)$ mit dem Ansatz $\vartheta(x,t) = \theta(x)\sin(\omega t)$ eine gewöhnliche Differentialgleichung für $\theta(x)$ und geben Sie deren allgemeine Lösung sowie die zugehörigen Randbedingungen an.

Nebenrechnung:

Differentialgleichung:

Lösung:

Randbedingungen:

c) Als Lösung des Problems aus b) ergeben sich jeweils für $k=1,2,\ldots$ folgende Eigenkreisfrequenzen $\omega_{2k-1},\ \omega_{2k}$ und Eigenformen $\theta_{2k-1}(x),\ \theta_{2k}(x)$

$$\omega_{2k-1} = (2k-1)\widetilde{C}, \qquad \theta_{2k-1}(x) = \sin\left(\frac{(2k-1)\pi}{l}x\right),$$

$$\omega_{2k} = 2k\widehat{C}, \qquad \qquad \theta_{2k}(x) = \cos\left(\frac{2k\pi}{l}x\right).$$

Geben Sie die Erregerkreisfrequenzen Ω_1 und Ω_2 an, für die es in den folgenden Fällen zu Resonanz kommt:

- 1. $M_l(t) = M_0 \sin(\Omega_1 t), \quad M_r(t) = M_0 \sin(\Omega_1 t),$
- 2. $M_l(t) = M_0 \sin(\Omega_2 t), \quad M_r(t) = -M_0 \sin(\Omega_2 t).$

Überlegen Sie dazu, welche der Eigenformen durch welche äußeren Momente angeregt werden können.

Nebenrechnung:	
Erregerkreisfrequenzen Ω_1 , Ω_2 :	