Technische Universität Berlin

Fakultät II – Institut für Mathematik B. Jacob/J. Liesen/R. Nabben/R. Seiler/T. Stykel

WS 05/06 12. April 2006

April – Klausur (Verständnisteil) Lineare Algebra für Ingenieure

Name: Vorname:						
MatrNr.:	Studien	gang	g:			
Neben einem handbeschriebenen A4 Bla tel zugelassen. Es sind keine Taschenr						
Die Lösungen sind in Reinschrift auf Adbene Klausuren können nicht gewertet		abz	zugeben	. Mit B	leistift į	geschrie-
Dieser Teil der Klausur umfasst die Ve Rechenaufwand mit den Kenntnissen aus nichts anderes gesagt ist, immer eine ku	der Vorl	esun	ıg lösbaı	r sein. (_
Die Bearbeitungszeit beträgt eine Stur	ıde.					
Die Gesamtklausur ist mit 40 von 80 Pu Teile der Klausur mindestens 12 von 40			,		edem de	r beiden
Korrektur						
		1	2	3	4	Σ

1. Aufgabe 14 Punkte

- (a) $A^T A = I_3 (= E_3)$, (*I* oder *E* soll man auch akzeptieren) weil *A* eine orthogonale Matrix ist. (eine alternative Begründung: $\langle (\text{Zeile } i)^T, \text{Spalte } j \rangle = \delta_{ij}$ für $1 \leq i \leq 3$.)
- (b) A ist invertierbar mit $A^{-1} = A^{T}$, weil $AA^{T} = A^{T}A = I$ gilt.
- (c) $|\det(A)|=1$: Aus $AA^{\mathrm{T}}=I$ und den Eigenschaften der Determinante folgt det A det $A^{\mathrm{T}}=\det I=1$. Nun ist aber det $A=\det A^{\mathrm{T}}$ und damit $(\det A)^2=1$
- (d) Die Zeilen von A sind **nicht** linear abhängig, weil die Spalten von A eine Basis bilden und Spaltenrang = Zeilenrang.
- (e) Das LGS $A\vec{x}=\vec{0}$ hat genau eine Lösung $(\vec{x}=\vec{0})$. Rang A=3 heisst, dass die NZSF von A die Einheitsmatrix ist. Die Lösung des LGSs ist dann eindeutig. (Alternative Begründungen sind auch akzeptabel. Beispiel: Rang A=3 heisst, dass A invertierbar ist. Somit ist $A^{-1}A\vec{x}=A^{-1}\vec{0}$ oder $\vec{x}=\vec{0}$.)

$$(f) \ \|A\begin{bmatrix}1\\0\\1\end{bmatrix}\| = \sqrt{\langle A\begin{bmatrix}1\\0\\1\end{bmatrix}, A\begin{bmatrix}1\\0\\1\end{bmatrix}\rangle} = \sqrt{\langle \begin{bmatrix}1\\0\\1\end{bmatrix}, \begin{bmatrix}1\\0\\1\end{bmatrix}\rangle} = \sqrt{2}$$

2. Aufgabe 11 Punkte

(a)
$$L\left(\begin{bmatrix} 8\\4\\1 \end{bmatrix}\right) = L\left(\begin{bmatrix} 8\\0\\0 \end{bmatrix}\right) + L\left(\begin{bmatrix} 0\\4\\0 \end{bmatrix}\right) + L\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix}\right)$$
$$= 8L\left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}\right) + 4L\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix}\right) + L\left(\begin{bmatrix} 0\\0\\1 \end{bmatrix}\right)$$
$$= 8(x^2 + 1) + 4(x) + 1(0) = 8x^2 + 4x + 8.$$

- (b) L ist nicht injektiv, weil aus $L\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right)=0$ folgt $\begin{bmatrix}0\\0\\1\end{bmatrix}\in \mathrm{Kern}\ L.$
- (c) L ist nicht surjektiv, weil z.B. $x^2 \notin Bild L gilt$.
- (d) L ist nicht invertierbar. Die Abbildung ist nicht injektiv und surjektiv.
- (e) $\mathcal{L} = \emptyset$. Die lineare Gleichung $a(x^2 + 1) + b(x) = 0x^2 + x + 1$ hat keine Lösung.

3. Aufgabe 8 Punkte

(a) Zuerst liegt das Nullpolynom $p_0 = 0$ in P_1 ($p_0(1) = 0$), also ist P_1 nicht leer. Seien $p, q \in P_1$ (d.h. p(1) = q(1) = 0) und $\lambda \in \mathbb{R}$. Zu zeigen: P_1 ist abgeschlossen bzgl. der Addition und der Skalarmultiplikation.

Addition: Die Summe p + q ist wieder ein Element von P_1 , da (p + q)(1) = p(1) + q(1) = 0 + 0 = 0

Skalarmultiplikation: Weil $(\lambda p)(1) = \lambda(p(1)) = \lambda \cdot 0 = 0$, ist $\lambda p \in P_1$. Die Bedingungen eines Teilraums sind damit erfüllt und P_1 ist ein Teilraum.

- (b) P_2 ist kein Teilraum: $\|\vec{0}\| = 0 \not\geq 1 \implies \vec{0} \notin P_2$.
- (c) P_3 ist ein Teilraum, weil $P_3 = \mathbb{R}_{\leq 2}[x]$ gilt.

4. Aufgabe 7 Punkte

Die Lösung soll deutlich folgende Information enthalten:

$$S = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 (Eigenvektoren als Spalten)

$$D=\left[\begin{array}{cc} 3 & 0 \\ 0 & -1 \end{array}\right]$$
 und/oder $e^{Dt}=\left[\begin{array}{cc} e^{3t} & 0 \\ 0 & e^{-t} \end{array}\right]$ (Eigenwerte auf der Diagonal + Rechenregel)

 $S^{-1}=\left[\begin{array}{cc} 1 & 0 \\ -1 & 1 \end{array}\right]$ (nach dem Regel für das invertieren von 2×2 Matrizen oder nach Rechnen)

$$\vec{y}(t) = Se^{Dt}S^{-1}\vec{y}_{t_0} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{3t} & 0 \\ 0 & e^{-t} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

$$= \begin{bmatrix} e^{3t} & 0 \\ e^{3t} & e^{-t} \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3e^{3t} \\ 3e^{3t} + 2e^{-t} \end{bmatrix}$$

Alternativ:
$$\vec{y_0} = 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{y}(t) = e^{3t} \cdot 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{-t} \cdot 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 3e^{3t} \\ 3e^{3t} + 2e^{-t} \end{bmatrix}$$