Technische Universität Berlin

Fakultät II – Institut für Mathematik

WS 06/07

R. Nabben/M. Scherfner/M. Scheutzow/R. Seiler/H. Winkler 11.04.2007

April – Klausur (Rechenteil) Lineare Algebra für Ingenieure

Name:	vorname:	• •		• • • • • •	• • • • • •	• • • • • • • •
MatrNr.:	Studienga	ang	<u>;</u> :			
Neben einem handbeschriebenen A4 Blattel zugelassen. Es sind keine Taschenr						
Die Lösungen sind in Reinschrift auf Azihrem Namen und ihrer Matrikelnummer Klausuren können nicht gewertet werde	beschrifte		_			
Dieser Teil der Klausur umfasst die Rec ständigen Rechenweg an.	chenaufgab	en.	. Gebe	n Sie ir	nmer d	en voll-
Die Bearbeitungszeit beträgt eine Stun	ıde.					
Die Gesamtklausur ist mit 40 von 80 Pur Teile der Klausur mindestens 12 von 40			,	•	dem de	r beiden
Korrektur						
	1		2	3	4	Σ

10 Punkte

Gegeben sind
$$A = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ -1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 & 2 \end{bmatrix}$$
 und $\vec{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

- (a) Berechnen Sie die Lösungsmenge des LGS $A\vec{x} = \vec{b}$ mit Hilfe des Gauß-Algorithmus.
- (b) Bestimmen Sie den Kern von A.
- (c) Berechnen Sie die Dimension des Kerns von A.
- (d) Bestimmen Sie den Rang von A.
- (e) Bestimmen Sie zwei spezielle Lösungen des LGS $A\vec{x} = \vec{b}$.

2. Aufgabe

12 Punkte

Gegeben ist die Matrix
$$B = [B_{ij}]_{i,j=1,\dots,4} = \begin{bmatrix} 5 & 3 & -3 & 3 \\ 0 & -3 & 0 & 0 \\ 6 & 3 & -4 & 3 \\ 0 & 2 & 0 & -1 \end{bmatrix}.$$

- (a) $\lambda = -1$ ist ein Eigenwert von B. Berechnen Sie den Eigenraum $V_{\lambda = -1}$.
- (b) Berechnen Sie alle Eigenwerte von B.
- (c) Berechnen Sie die Normen $||B||_1$, $||B||_2$ und $||B||_3$ mit

$$||B||_1 := \max\{\sum_{j=1}^4 |B_{ij}| : i = 1, \dots, 4\}$$
, $||B||_2 := \max\{|B_{ij}| : i, j = 1, \dots, 4\}$, $||B||_3 := \max\{|\lambda| : \lambda \text{ ist Eigenwert von } B\}$.

(d) Bezüglich welcher Norm ist B am größten?

3. Aufgabe

12 Punkte

Gegeben ist der Vektorraum $\mathbb{R}_{\leq 1}[x]$ mit der Basis $\mathcal{B} = \{x, x - 1\}$ und die lineare Abbildung $L : \mathbb{R}_{\leq 1}[x] \to \mathbb{R}_{\leq 1}[x]$ mit L(ax + b) = -ax + 2b.

- (a) Berechnen Sie die Koordinaten von p(x) = 4x 3 bezüglich \mathcal{B} .
- (b) Berechnen Sie die darstellende Matrix $L_{\mathcal{B}}$ von L bezüglich $\mathcal{B}.$
- (c) Gegeben ist eine weitere lineare Abbildung $G: \mathbb{R}_{\leq 1}[x] \to \mathbb{R}_{\leq 1}[x]$ mit darstellender Matrix $G_{\mathcal{B}} = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$. Berechnen Sie die darstellende Matrix der linearen Abbildung $G \circ L$ bezüglich \mathcal{B} .
- (d) Berechnen Sie $(G \circ L)(p)$ für das Polynom p aus (a).

4. Aufgabe

6 Punkte

Lösen Sie das AWP $\frac{d\vec{y}(t)}{dt} = M\vec{y}(t)$ mit $\vec{y}(0) = \begin{bmatrix} 2\\3\\2 \end{bmatrix}$, wobei $M \in \mathbb{R}^{3,3}$ die Eigenwerte 0, 2 und 5 hat. Die zugehörigen Eigenräume lauten

$$V_{\lambda=0} = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\} , V_{\lambda=2} = \operatorname{span}\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} , V_{\lambda=5} = \operatorname{span}\left\{ \begin{bmatrix} 2\\-2\\1 \end{bmatrix} \right\}.$$