Technische Universität Berlin Fakultät II – Institut für Mathematik C. Mehl/K. Roegner/R. Seiler

SS 07 10.10.2007

Oktober – Klausur (Rechenteil) Lineare Algebra für Ingenieure

Name:	Vorname:					
MatrNr.:	Studienge	ang:				
Neben einem handbeschriebenen A4 Blatt m lassen. Es sind keine Taschenrechner und					$\operatorname{Hilfsmit}$	tel zuge-
Die Lösungen sind in Reinschrift auf A4 rem Namen und Ihrer Matrikelnummer beschkönnen nicht gewertet werden.		_				
Dieser Teil der Klausur umfasst die Rechense Rechenweg an.	aufgaben. (Geben S	Sie imm	er den	vollstä	indigen
Die Bearbeitungszeit beträgt eine Stunde.						
Die Gesamtklausur ist mit 40 von 80 Punkte Klausur mindestens 12 von 40 Punkten errei			in jede	em der l	beiden '	Teile der
Korrektur						
		1	2	3	4	Σ

1. Aufgabe 8 Punkte

Gegeben sei das lineare Gleichungssystem (LGS):

- (a) Geben Sie die erweiterte Koeffizientenmatrix an.
- (b) Bringen Sie die erweiterte Koeffizientenmatrix in die normierte Zeilenstufenform (NZSF).
- (c) Welchen Rang hat die erweiterte Koeffizientenmatrix?
- (d) Bestimmen Sie die Lösungsmenge $\mathcal{L} \subseteq \mathbb{R}^4$ des LGS.

2. Aufgabe 7 Punkte

Sei
$$C := \begin{bmatrix} 0 & \alpha & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix} \in \mathbb{R}^{4,4}.$$

- (a) Berechnen Sie die Determinante von C in Abhängigkeit des Parameters α .
- (b) Für welche α sind die Spalten von C linear abhängig?

3. Aufgabe 16 Punkte

Gegeben sei die Matrix

$$A := \left[\begin{array}{ccc} 3 & 6 & 12 \\ 0 & 6 & 6 \\ 0 & -3 & -3 \end{array} \right] \in \mathbb{C}^{3,3}.$$

- (a) Berechnen Sie die Eigenwerte der linearen Abbildung $A:\mathbb{C}^3 \to \mathbb{C}^3.$
- (b) Bestimmen Sie zu jedem Eigenwert den zugehörigen Eigenraum.
- (c) Geben Sie für jeden Eigenwert die algebraische Vielfachheit und die geometrische Vielfachheit an.
- (d) Bestimmen Sie Matrizen S, S^{-1} und D, so dass $A = SDS^{-1}$ gilt.
- (e) Lösen Sie das Anfangswertproblem $\frac{d\vec{y}}{dt}(t)=A\vec{y}(t),\ \vec{y}(0)=\begin{bmatrix}0\\1\\-1\end{bmatrix}.$

4. Aufgabe 9 Punkte

Die Koordinatenabbildung $K_{\mathcal{B}}$ von $\mathbb{R}_{\leq 2}[x]$ bezüglich einer bestimmten Basis $\mathcal{B} := \{p_1, p_2, p_3\}$ ist gegeben durch:

$$K_{\mathcal{B}}: \quad \mathbb{R}_{\leq 2}[x] \quad \to \quad \mathbb{R}^{3}$$

$$ax^{2} + bx + c \quad \mapsto \quad \begin{bmatrix} a - c \\ a + b \\ b + 2c \end{bmatrix}$$

- (a) Bestimmen Sie $K_{\mathcal{B}}^{-1} \left(\begin{bmatrix} e \\ f \\ g \end{bmatrix} \right)$ für $\begin{bmatrix} e \\ f \\ g \end{bmatrix} \in \mathbb{R}^3$.
- (b) Bestimmen Sie \mathcal{B} .