Lösung zur Februar-Klausur (Verständnisteil) Lineare Algebra für Ingenieure

Variante A

1. Aufgabe 10 Punkte

- a) Geben Sie ein Erzeugendensystem von $\mathbb{R}^{2,2}$ an, das keine Basis ist.
- b) Bestimmen Sie alle $s \in \mathbb{R}$, sodass die drei Matrizen $\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ und $\begin{bmatrix} 2 & s \\ 0 & 2 \end{bmatrix}$ linear unabhängig sind.
- c) Geben Sie eine Matrix A an, sodass $\mathcal{B} = \{ \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, A \}$ eine Basis des $\mathbb{R}^{2,2}$ ist.
- a) (3 Punkte)

z.B. ist $\mathcal{E} = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ ein Erzeugendensystem von $\mathbb{R}^{2,2}$ aber keine Basis des $\mathbb{R}^{2,2}$, denn für $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2,2}$ gilt

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] + c \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right] + d \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right],$$

also ist \mathcal{E} ein Erzeugendensystem, aber \mathcal{E} ist keine Basis, da dim $\mathbb{R}^{2,2} = 4$ und somit jede Basis 4 Elemente enthält, \mathcal{E} aber 5.

b) (4 Punkte)

Zu untersuchen ist, für welche $s \in \mathbb{R}$ die Gleichung

$$\lambda_1 \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + \lambda_3 \begin{bmatrix} 2 & s \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

nur die triviale Lösung $\lambda_1=\lambda_2=\lambda_3=0$ besitzt. Das führt auf das lineare Gleichungssystem

$$\left[\begin{array}{ccc|c} 2 & 2 & 2 & 0 \\ 1 & 1 & s & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{array}\right].$$

Überführung auf ZSF liefert

$$\left[\begin{array}{ccc|ccc} 2 & 2 & 2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & s-1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Hieran kann man ablesen, dass für $s \neq 1$ als einzige Lösung $\lambda_1 = \lambda_2 = \lambda_3 = 0$ besitzt. für $s \neq 1$ sind somit $\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ und $\begin{bmatrix} 2 & s \\ 0 & 2 \end{bmatrix}$ linear unabhängig. Für s = 1 ist λ_3 frei wählbar und somit $\begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$ und $\begin{bmatrix} 2 & s \\ 0 & 2 \end{bmatrix}$ linear abhängig.

c) (3 Punkte)

Für $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ ist \mathcal{B} eine Basis: Da dim $\mathbb{R}^{2,2} = 4$ und damit jede 4-elementige linear unabhängige Teilmenge des $\mathbb{R}^{2,2}$ eine Basis ist, reicht es zu zeigen, dass \mathcal{B} linear unabhängig ist. Es muss also gelten

$$\lambda_1 \left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right] + \lambda_2 \left[\begin{array}{cc} 2 & 1 \\ 0 & 1 \end{array} \right] + \lambda_3 \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right] + \lambda_4 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0,$$

was in der erweiterten Koeffizientenmatrix

$$\left[\begin{array}{ccc|cccc}
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & 0
\end{array}\right]$$

ergibt. Als ZSF ergibt sich

$$\left[\begin{array}{ccc|ccc|c} 2 & 2 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right],$$

woran man ablesen kann, dass $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$ folgt.

2. Aufgabe

12 Punkte Die Matrix $F \in \mathbb{C}^{3,3}$ hat die Eigenvektoren $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ zu den Eigenwerten 0,1 bzw. 2.

- a) Ist F diagonalisierbar?
- b) Ist F invertierbar?
- c) Bestimmen Sie Kern(F).
- d) Bestimmen Sie $\dim(Bild(F))$ und Bild(F).

a) (2 Punkte)

F ist diagonalisierbar, weil F drei paarweise verschiedene Eigenwerte hat.

b) (2 Punkte)

F ist nicht invertierbar, da 0 ein Eigenwert ist und damit der Kern nicht trivial ist.

c) (4 Punkte)

Der Kern von F ist der Eigenraum von F zum Eigenwert 0.

Da $F \in \mathbb{C}^{3,3}$ ist und wir drei paarweise verschiedene Eigenwerte haben, ist die geometrische VFH jeweils 1, also insbesondere dim $V_0 = \dim \operatorname{Kern}(F) = 1$.

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 ist Eigenvektor zum Eigenwert 0, also
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in \operatorname{Kern}(F).$$

Daraus folgt
$$\operatorname{Kern}(F) = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}.$$

d) (4 Punkte)

Nach Dimensionssatz gilt $3 = \dim(\operatorname{Kern}(F)) + \dim(\operatorname{Bild}(F))$, also $\dim(\operatorname{Bild}(F)) = 2$.

Da
$$F(\begin{bmatrix} 0\\1\\0 \end{bmatrix}) = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
 und $F(\begin{bmatrix} 0\\1\\1 \end{bmatrix}) = \begin{bmatrix} 0\\2\\2 \end{bmatrix}$, sind $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\2\\2 \end{bmatrix} \in Bild(F)$.

Die beiden Vektoren $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\2\\2 \end{bmatrix}$ sind linear unabhängig und spannen daher $\mathrm{Bild}(F)$ auf.

$$\text{Daher gilt Bild}(F) = \operatorname{span} \{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} \} = \{ \begin{bmatrix} 0 \\ a \\ b \end{bmatrix} \mid a, b \in \mathbb{C} \}.$$

3. Aufgabe 9 Punkte

$$\operatorname{Zu} B = \left[\begin{array}{ccc} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{array} \right] \in \mathbb{R}^{3,3} \text{ sind Matrizen } Q = \left[\begin{array}{ccc} -\frac{4}{5} & q & \frac{3}{5} \\ 0 & 1 & 0 \\ \frac{3}{5} & 0 & \frac{4}{5} \end{array} \right] \text{ und } R = \left[\begin{array}{ccc} 3 & 0 & r_1 \\ r_2 & 1 & 2 \\ 0 & 0 & r_3 \end{array} \right]$$

gegeben. Von B sind die Einträge $b_{13} = \frac{2}{5}$ und $b_{33} = \frac{11}{5}$ bekannt.

- a) Bestimmen Sie $q, r_1, r_2, r_3 \in \mathbb{R}$ so, dass Sie mit Q und R eine QR-Zerlegung von B erhalten.
- b) Bestimmen Sie die Determinante von Q und von B.

a) (5 Punkte)

Da Q und R eine QR-Zerlegung von B bilden sollen, muss Q eine orthogonale Matrix und R eine obere Dreiecksmatrix sein. Damit Q orthogonal ist, muss jede Spalte Norm 1 haben. Das einzige $q \in \mathbb{R}$, sodass die zweite Spalte von Q Norm 1 hat, ist q = 0.

Damit R obere Dreiecksmatrix ist, muss $r_2 = 0$ gelten.

Desweiteren muss QR=B gelten. Daraus ergeben sich zur Bestimmung von r_1 und r_3 die beiden Gleichungen

$$b_{13} = -\frac{4}{5}r_1 + 2q + \frac{3}{5}r_3$$

$$b_{33} = \frac{3}{5}r_1 + \frac{4}{5}r_3,$$

woraus $r_1 = 1$ und $r_3 = 2$ folgt.

b) (4 Punkte)

Wir entwickeln nach der zweiten Spalte von Q und erhalten damit

$$\det Q = 1 \det \left[\begin{array}{cc} -\frac{4}{5} & \frac{3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{array} \right] = -1.$$

Nach dem Determinantenmultiplikationssatz gilt

$$\det B = \det(QR) = \det Q \det R = -1 \cdot (3 \cdot 1 \cdot 2) = -6.$$

4. Aufgabe 9 Punkte

a) Untersuchen Sie, ob $T := \{A \in \mathbb{R}^{2,2} \mid \det A = 0\}$ ein Teilraum von $\mathbb{R}^{2,2}$ ist.

b) Untersuchen Sie, ob $U:=\{p(x)\in\mathbb{R}_{\leq 2}[x]\mid p(1)=0\}$ ein Teilraum von $\mathbb{R}_{\leq 2}[x]$ ist.

Damit W ein Teilraum eines \mathbb{R} -Vektorraums V ist, müssen folgende 3 Kriterien erfüllt sein:

- i) $W \neq \emptyset$
- ii) Für alle $w_1, w_2 \in W$ muss gelten $w_1 + w_2 \in W$.
- iii) Für alle $w \in W, \lambda \in \mathbb{R}$ muss gelten $\lambda w \in W$.

(1 Punkt)

a) (3 Punkte)

T ist kein Teilraum des $\mathbb{R}^{2,2}$, da ii) nicht erüllt ist: $T_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ und $T_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ sind Elemente aus T, da det $T_1 = \det T_2 = 0$. Aber $\det(T_1 + T_2) = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \neq 0$, also ist $T_1 + T_2 \notin T$.

b) (5 Punkte)

Uist ein Teilraum des $\mathbb{R}_{\leq 2}[x],$ da alle drei Kriterien i)-iii) erfüllt sind:

- i) $U \neq \emptyset$, da das Nullpolynom p(x) = 0 in U enthalten ist.
- ii) Seien $p_1, p_2 \in U$, also $p_1(1) = p_2(1) = 0$. Dann gilt $(p_1 + p_2)(1) = p_1(1) + p_2(1) = 0 + 0 = 0$. Also $p_1 + p_2 \in U$.
- iii) Sei $p \in U$, also p(1) = 0. Sei weiter $\lambda \in \mathbb{R}$. Dann gilt $(\lambda p)(1) = \lambda \cdot p(1) = \lambda \cdot 0 = 0$, also ist $\lambda p \in U$.