Technische Universität Berlin Fakultät II – Institut für Mathematik L. Knipping, R. Nabben, R. Patterson, M. Scheutzow

 $WS\ 12/13$ 04.04.2013

$\mathbf{April}-\mathbf{Klausur}$ Lineare Algebra für Ingenieure

Name:		Vorname:						
Matr.–Nr.:	. Stud	diengang	ç:					
Neben einem handbeschriebenen A4 Blatt mit besondere sind keine Taschenrechner und ke					fsmittel	zugelass	sen. Ins-	
Die Lösungen sind in Reinschrift auf A4 Blätte Ihrer Matrikelnummer beschriftet sein. Mit Bl werden.		_						
Geben Sie immer eine kurze Begründung und vollziehbaren Bezug Ihrer Antwort zur Aufgabe / im Tutorium / im Skript" gilt nicht als Begrün es muss begründet werden, warum der Satz in o	gibt es l ndung. I	keine Pu Der entsj	ınkte. "I prechene	Nach der de Satz	m Satz i muss zit	in der Ver tiert wer	orlesung den und	
Die Bearbeitungszeit beträgt 90 Minuten.								
Die Klausur ist mit mindestens 30 von 60 Punk	rten bes	tanden.						
Korrektur								
	1	2	3	4	5	6	Σ	

1. Aufgabe Gegeben seien die Matrix $A := \begin{bmatrix} 1 & -2 & 1 & 3 & 0 \\ -3 & 6 & 1 & 7 & 0 \\ 2 & -4 & 2 & 6 & 1 \end{bmatrix} \in \mathbb{R}^{3,5}$ und der Vektor $\vec{b} := \begin{bmatrix} 4 \\ 0 \\ 6 \end{bmatrix} \in \mathbb{R}^3$.

- (a) Bringen Sie die erweiterte Koeffizientenmatrix $[A \mid b]$ in normierte Zeilenstufenform.
- (b) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems $A\vec{x} = \vec{b}$.
- (c) Bestimmen Sie eine Basis von Bild(A).
- (d) Gibt es einen Vektor $\vec{v} \in \mathbb{R}^3$, sodass das lineare Gleichungssystem $A\vec{x} = \vec{v}$ keine Lösung besitzt?

2. Aufgabe 11 Punkte Gegeben sei die Matrix $B:=\left[\begin{array}{cccc}2&-1&2\\0&3&0\\1&1&1\end{array}\right]\in\mathbb{R}^{3,3}.$

- (a) Bestimmen Sie das charakteristische Polynom p_B der Matrix B.
- (b) Bestimmen Sie alle Eigenwerte von B und bestimmen Sie den Eigenraum zum größten Eigenwert.
- (c) Ist B diagonalisierbar?
- (d) Ist B invertierbar?

3. Aufgabe 12 Punkte

Gegeben seien die folgenden Abbildunger

Fig.
$$\mathbb{R}^2 \to \mathbb{R}_{\leq 2}[x]$$
 , $F_2: \mathbb{R}_{\leq 1}[x] \to \mathbb{R}^2$.
$$\begin{bmatrix} a \\ b \end{bmatrix} \mapsto ax^2 + x + (a - b) \qquad ax + b \mapsto \begin{bmatrix} a + b \\ 2a + b \end{bmatrix}$$

- (a) Überprüfen Sie, ob F_1 eine lineare Abbildung ist
- (b) Überprüfen Sie, ob F_2 eine lineare Abbildung ist.
- (c) Bestimmen Sie Kern (F_2) .
- (d) Ist F_2 invertierbar? Falls ja, bestimmen Sie F_2^{-1} .

4. Aufgabe

Gegeben seien der Vektorraum $V:=\left\{A\in\mathbb{R}^{2,2}\middle|A\text{ obere Dreiecksmatrix}\right\}$ und die lineare Abbildung $L:V\to V$, von der folgendes bekannt ist:

$$L\left(\left[\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right], \ L\left(\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 4 \end{array}\right], \ L\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right) = \left[\begin{array}{cc} 0 & -3 \\ 0 & 3 \end{array}\right] \ .$$

- (a) Zeigen Sie, dass $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$ im Kern von L liegt.
- (b) Geben Sie einen Eigenwert sowie einen zugehörigen Eigenvektor von ${\cal L}$ an.
- (c) Bestimmen Sie die darstellende Matrix von L bzgl. der Basis $\mathcal{B} := \left\{ \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ von V.

5. Aufgabe Gegeben sei mit $T:=\left\{\left[\begin{array}{c} a \\ b \\ -2b \end{array}\right] \middle| a,b\in\mathbb{R}\right\}$ ein Teilraum des \mathbb{R}^3 . 9 Punkte

- (a) Wählen Sie aus der Menge $M := \left\{ \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$ eine Basis \mathcal{C} von T aus. Begründen Sie Ihre Wahl Begründen Sie Ihre Wahl.
- (b) Ist Ihre in a) gewählte Basis eine Orthonormalbasis von T bzgl. des Skalarprodukts

$$\langle \cdot, \cdot \rangle_1 : T \times T \to \mathbb{R} \text{ mit } \left\langle \left[\begin{array}{c} a \\ b \\ c \end{array} \right], \left[\begin{array}{c} d \\ e \\ f \end{array} \right] \right\rangle_1 := \frac{1}{16}ad + \frac{1}{2}be + \frac{1}{8}cf ?$$

(c) Zeigen Sie, dass die folgende Abbildung kein Skalarprodukt auf \mathbb{R}^2 definiert:

$$\left\langle \cdot,\cdot\right\rangle_2:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}\ \mathrm{mit}\ \left\langle\left[\begin{array}{c} a\\b\end{array}\right],\left[\begin{array}{c} c\\d\end{array}\right]\right\rangle_2:=ac-ad-bc\ .$$

6. Aufgabe 8 Punkte

Geben Sie Matrizen $C_1, C_2, C_3, C_4 \in \mathbb{R}^{2,2}$ an, sodass die entsprechenden Bedingungen erfüllt werden. Zeigen Sie, dass die Bedingungen von den von Ihnen gewählten Matrizen erfüllt werden.

- (a) Es gilt $C_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ und $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \in \text{Kern}(C_1)$.
- (b) Es gilt $C_2 \neq 0$ und $C_2^2 = 0$.
- (c) Der Vektor $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ liegt nicht im Bild von C_3 .
- (d) $\vec{y}(t) = e^t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ist die Lösung des Anfangswertproblems $\frac{d\vec{y}(t)}{dt} = C_4 \vec{y}(t), \ \vec{y}_0 = \vec{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.