Technische Universität Berlin

Fakultät II – Institut für Mathematik M. Eigel, R. Nabben, K. Roegner, M. Wojtylak

WS 13/1402.04.2014

April – Klausur Lineare Algebra für Ingenieure Lösungsskizze

1. Aufgabe

9 Punkte

Gegeben seien die invertierbare Matrix $A := \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3,3}$ und der Vektor $\vec{b} = \begin{bmatrix} 4 \\ -2 \\ 2 \end{bmatrix} \in \mathbb{R}^3$.

- (a) Bestimmen Sie A^{-1} .
- (b) Bestimmen Sie die Lösungsmenge des reellen linearen Gleichungssystems $A\vec{x} = b$.
- (c) Bestimmen Sie Bild(A) und eine Basis von Kern(A).

(a) **(4 Punkte)**

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ -2 & 1 & 2 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{II}+2\text{I}} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}\text{III}} \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

$$\xrightarrow{\text{I-III}} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \implies A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & -2 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$

(b) (2 Punkte)

(c) **(3 Punkte)**

Da A invertierbar ist, gilt $\operatorname{Bild}(A) = \mathbb{R}^3$ und $\operatorname{Kern}(A) = \{\vec{0}\}$. Also ist $\operatorname{Basis}(\operatorname{Kern}(A)) = \emptyset$.

2. Aufgabe

10 Punkte

Sei $B \in \mathbb{R}^{3,3}$ eine reelle Matrix mit den Eigenwerten -1,3,3 und seien

$$V_{\lambda=-1} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}, \quad V_{\lambda=3} = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

die zugehörigen Eigenräume.

- (a) Ist B invertierbar?
- (b) Ist B diagonalisierbar?
- (c) Gibt es einen Vektor $\vec{c} \in \mathbb{R}^3$, sodass das lineare Gleichungssystem $B\vec{x} = \vec{c}$ unendlich viele Lösungen
- (d) Lösen Sie das folgende Anfangswertproblem: $\frac{d\vec{y}}{dt}(t) = B\vec{y}(t)$ für $\vec{y}_0 = \vec{y}(-3) = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$.
- (e) Ist $\det(-\frac{1}{3}BB^T) = 0$?

(a) (1 Punkt)

Ja, da 0 kein Eigenwert von B ist.

(b) **(2 Punkte)**

Damit B diagonalisierbar ist, muss folgendes gelten: algVFH = geomVFH für alle Eigenwerte von B. Nach Voraussetzung ist 3 ein Eigenwert von B mit algVFH $(\lambda = 3) = 2 \neq 1 = \text{geomVFH}(\lambda = 3)$. Also ist B nicht diagonalisierbar.

(c) **(2 Punkte)**

Nein, da B nach (a) invertierbar ist, d.h. $NZSF(B) = I_3$. Somit gibt es für jeden Vektor $\vec{c} \in \mathbb{R}^3$ genau eine Lösung $\vec{x} \in \mathbb{R}^3$ der Gleichung $B\vec{x} = \vec{c}$.

(d) (2 Punkte)

Lösung des AWPs mit der Eigenwertmethode. Wir stellen $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ als Linearkombination von Eigenvek-

toren von
$$B$$
 dar: $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \vec{y_0}$.

Als Lösung des AWPs folgt:
$$y(t) = e^{(-1)\cdot(t+3)} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - e^{3(t+3)} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} e^{(-1)\cdot(t+3)} - e^{3(t+3)} \\ -e^{3(t+3)} \\ e^{(-1)\cdot(t+3)} \end{bmatrix}$$
.

(e) (3 Punkte)

Nein, da nach (a) B invertierbar ist, d.h. $det(B) \neq 0$. Außerdem gilt $det(B) = det(B^T) \neq 0$ und

$$\det\left(-\frac{1}{3}BB^T\right) = \left(-\frac{1}{3}\right)^3 \cdot \det\left(B\right) \cdot \det\left(B^T\right) = \left(-\frac{1}{3}\right)^3 \det(B)^2 \neq 0.$$

3. Aufgabe

Gegeben seien der Vektorraum $\mathbb{R}_{\leq 2}[x]$, die Basis $\mathcal{C} := \{3, x-1, x^2-x+2\}$ des $\mathbb{R}_{\leq 2}[x]$ sowie die lineare Abbildung $F : \mathbb{R}_{\leq 2}[x] \to \mathbb{R}_{\leq 2}[x]$ mit

$$F(3) = 2x^2 + 4$$
, $F(x-1) = -x^2 - 2$, $F(x^2 - x + 2) = -2x^2 + 2x - 4$.

- (a) Bestimmen Sie zwei Elemente in Kern(F).
- (b) Bestimmen Sie zwei Eigenwerte von F und jeweils einen zugehörigen Eigenvektor.
- (c) Ist die darstellende Matrix $F_{\mathcal{C}}$ von F bzgl. der Basis \mathcal{C} surjektiv?

(a) (4 Punkte)

Da F eine lineare Abbildung ist, ist $0x^2 + 0x + 0 = 0 \in \text{Kern}(F)$. Außerdem gilt:

$$0 = 2x^{2} + 4 + 2(-x^{2} - 2)$$

$$= F(3) + 2 \cdot F(x - 1)$$

$$= F(3 + 2(x - 1))$$

$$= F(2x + 1)$$

Also liegt auch 2x + 1 im Kern von F.

(b) **(4 Punkte)**

Da 2x+1 im Kern von F liegt, gilt $F(2x+1)=0\cdot(2x+1)$, d.h. 0 ist ein Eigenwert von F mit Eigenvektor 2x+1. Außerdem ist laut Aufgabenstellung $F(x^2-x+2)=-2\cdot(x^2-x+2)$, d.h. -2 ist ein Eigenwert von F mit Eigenvektor x^2-x+2 .

(c) **(2 Punkte)**

Nein, da nach (b) (bzw. (a)) 0 ein Eigenwert von F ist. Also ist F nicht injektiv und der Dimensionssatz liefert $\dim(\operatorname{Bild}(F)) \leq 2 \neq 3 = \dim(\mathbb{R}_{\leq 2}[x])$, also ist F auch nicht surjektiv. Somit ist auch jede darstellende Matrix von F nicht surjektiv, insbesondere also $F_{\mathcal{C}}$.

4. Aufgabe 12 Punkte

Gegeben seien der drei-dimensionale Vektorraum $V := \left\{ \begin{bmatrix} a & b \\ c & c \end{bmatrix} \mid a,b,c \in \mathbb{R} \right\}$, die Menge $\mathcal{B}_1 := \left\{ \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} \right\}$ und die lineare Abbildung $L: V \to V; A \mapsto A$.

- (a) Zeigen Sie, dass \mathcal{B}_1 eine Basis von V ist.
- (b) Bestimmen Sie die Koordinatenabbildung von V bzgl. der Basis \mathcal{B}_1 von V.
- (c) Bestimmen Sie die darstellende Matrix $L_{\mathcal{B}_1}$ von L bzgl. der Basis \mathcal{B}_1 .
- (d) Sei \mathcal{B}_2 eine weitere Basis von V. Bestimmen Sie den Urbildraum und Bildraum der als Matrixabbildung aufgefassten Transformationsmatrix $S_{\mathcal{B}_2 \to \mathcal{B}_1}$.

(a) (5 Punkte)

Es gilt

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} \in V,$$

also ist $\mathcal{B}_1 \subset V$. Da \mathcal{B}_1 drei Elemente enthält und V drei-dimensional ist, reicht es zu zeigen, dass die Vektoren in \mathcal{B}_1 linear unabhängig sind. Dies führt auf das LGS

$$\begin{aligned} &\alpha_1 \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha_1 & -2\alpha_1 + 2\alpha_2 - 2\alpha_3 \\ \alpha_1 + \alpha_3 & \alpha_1 + \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ &\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 2 & -2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Nun bringen wir die KM auf NZSF:

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ -2 & 2 & -2 \\ 1 & 0 & 1 \end{array}\right] \xrightarrow{\mathrm{II}+2\mathrm{I}} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{array}\right] \xrightarrow{\frac{1}{2}\mathrm{II}} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right] \xrightarrow{\mathrm{II}+\mathrm{III}} \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right].$$

Das homogene LGS hat damit genau die triviale Lösung $\alpha_1 = \alpha_2 = \alpha_3 = 0$, sodass die gegebenen Vektoren linear unabhängig sind. Also ist \mathcal{B}_1 eine Basis von V.

(b) (3 Punkte)

$$\begin{aligned} \alpha_1 \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & -2 \\ 1 & 1 \end{bmatrix} &= \begin{bmatrix} \alpha_1 & -2\alpha_1 + 2\alpha_2 - 2\alpha_3 \\ \alpha_1 + \alpha_3 & \alpha_1 + \alpha_3 \end{bmatrix} &= \begin{bmatrix} a & b \\ c & c \end{bmatrix} \\ \Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ -2 & 2 & -2 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} &= \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\left[\begin{array}{cc|c} 1 & 0 & 0 & a \\ -2 & 2 & -2 & b \\ 1 & 0 & 1 & c \end{array} \right] \xrightarrow{\text{II}+2\text{I}} \left[\begin{array}{cc|c} 1 & 0 & 0 & a \\ 0 & 2 & -2 & b+2a \\ 0 & 0 & 1 & c-a \end{array} \right] \xrightarrow{\frac{1}{2}\text{II}} \left[\begin{array}{cc|c} 1 & 0 & 0 & a \\ 0 & 1 & -1 & \frac{b+2a}{2} \\ 0 & 0 & 1 & c-a \end{array} \right] \xrightarrow{\text{II}+\text{III}} \left[\begin{array}{cc|c} 1 & 0 & 0 & a \\ 0 & 1 & 0 & \frac{b}{2}+c \\ 0 & 0 & 1 & c-a \end{array} \right].$$

$$\begin{array}{cccc} K_{\mathcal{B}_1}: & V & \to & \mathbb{R}^3 \\ & \begin{bmatrix} a & b \\ c & c \end{bmatrix} & \mapsto & \begin{bmatrix} a \\ \frac{b}{2} + c \\ c - a \end{bmatrix}. \end{array}$$

(c) (2 Punkte)

Es gilt $L_{\mathcal{B}_1} = K_{\mathcal{B}_1} \circ L \circ K_{\mathcal{B}_1}^{-1}$. Da L die identische Abbildung ist, folgt sofort $L_{\mathcal{B}_1} = K_{\mathcal{B}_1} \circ L \circ K_{\mathcal{B}_1}^{-1} = K_{\mathcal{B}_2} \circ L \circ K_{\mathcal{B}_1}^{-1}$ $K_{\mathcal{B}_1} \circ K_{\mathcal{B}_1}^{-1} = I$. Also ist

$$L_{\mathcal{B}_1} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

(d) (2 Punkte) $S_{\mathcal{B}_2 \to \mathcal{B}_1} : \mathbb{R}^3 \to \mathbb{R}^3$, da dim(V) = 3, also sind der Urbildraum und der Bildraum gleich \mathbb{R}^3 .

5. Aufgabe

9 Punkte

Gegeben seien der euklidische Vektorraum \mathbb{R}^3 ausgestattet mit dem Standardskalarprodukt und eine Basis $\mathcal{B} := \left\{ \vec{v}_1 := \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \vec{v}_2 := \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \vec{v}_3 := \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right\} \text{ von } \mathbb{R}^3.$

(a) Wenden Sie das Gram-Schmidt-Verfahren auf die Basis \mathcal{B} an, um \mathcal{B} in eine Orthonormalbasis \mathcal{B}_{ONB} zu überführen.

- (b) Bestimmen Sie eine QR-Zerlegung der Matrix $C := \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
- (c) Bestimmen Sie $\dim(Bild(C))$.

(a) (5 Punkte)

Normieren von \vec{v}_1 :

Es ist
$$\|\vec{v}_1\| = \sqrt{\langle \vec{v}_1, \vec{v}_1 \rangle} = \sqrt{2}$$
, also ist $\vec{q}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

Lot fällen auf \vec{v}_2 :

$$\begin{split} \vec{l}_2 &= \vec{v}_2 - \langle \vec{v}_2, \vec{q}_1 \rangle \vec{q}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\rangle \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \cdot 1 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}. \end{split}$$

Normieren von \vec{l}_2 :

Es ist
$$\|\vec{l}_2\| = \sqrt{\langle \vec{l}_2, \vec{l}_2 \rangle} = \frac{\sqrt{3}}{\sqrt{2}}$$
, also ist $\vec{q}_2 = \frac{\sqrt{2}}{2 \cdot \sqrt{3}} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$.

Lot fällen auf v_3 :

$$\begin{split} \vec{l}_3 &= \vec{v}_3 - \langle \vec{v}_3, \vec{q}_1 \rangle \vec{q}_1 - \langle \vec{v}_3, \vec{q}_2 \rangle \vec{q}_2 \\ &= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \left\langle \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\rangle \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \left\langle \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \right\rangle \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{2} \cdot 1 \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{6} \cdot 1 \cdot \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}. \end{split}$$

Normieren von l_3 :

Es ist
$$\|\vec{l}_3\| = \sqrt{\langle \vec{l}_3, \vec{l}_3 \rangle} = \frac{2}{\sqrt{3}}$$
, also ist $\vec{q}_3 = \frac{2\sqrt{3}}{2\cdot 3} \begin{bmatrix} -1\\1\\1 \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1 \end{bmatrix}$.

Antwort:

Also ist
$$\mathcal{B}_{\text{ONB}} = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\1\\1 \end{bmatrix} \right\}.$$

(b) (3 Punkte)

Da die Spalten von B die Vektoren \vec{v}_1, \vec{v}_2 und \vec{v}_3 sind, ergibt sich die Matrix $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}.$ Für die obere Dreiecksmatrix erhalten wir

$$R = Q^T \cdot C = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}\\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ 0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}}\\ 0 & 0 & \frac{2}{\sqrt{3}} \end{bmatrix}.$$

(c) (1 Punkt)

Da \mathcal{B} eine Basis des \mathbb{R}^3 ist, muss C invertierbar sein und somit ist dim(Bild(C)) = 3.

6. Aufgabe

- (a) Überprüfen Sie, ob die Abbildung $G: \mathbb{R}_{\leq 2}[x] \to \mathbb{R}^{2,2}; ax^2 + bx + c \mapsto \left[\begin{array}{cc} a+b & 0 \\ 0 & c-1 \end{array} \right]$ linear ist.
- (b) (i) Überprüfen Sie, ob $M_1 := \{ D \in \mathbb{R}^{2,2} \mid 1 \text{ und } 2 \text{ sind Eigenwerte von } D \}$ ein Teilraum des $\mathbb{R}^{2,2}$ ist.
 - (ii) Überprüfen Sie, ob $M_2:=\left\{ax^2+bx+c\in\mathbb{R}_{\leq 2}[x]\mid 2a-b=3c\right\}$ ein Teilraum des $\mathbb{R}_{\leq 2}[x]$ ist.

(a) **(2 Punkte)**

Es gilt $G(0) = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Somit ist G nicht linear, da das Nullelement einer linearen Abbildung immer auf das Nullelement abbildet.

Alternativ: Es gilt

$$G\left(2x^{2}\right)=G\left(x^{2}+x^{2}\right)=\left[\begin{array}{cc}2&0\\0&-1\end{array}\right]\neq\left[\begin{array}{cc}2&0\\0&-2\end{array}\right]=G\left(x^{2}\right)+G\left(x^{2}\right)=2G\left(x^{2}\right).$$

G ist also weder additiv noch homogen und somit nicht linear.

(b) (8 Punkte)

(i) (3 Punkte)

 M_1 ist kein Teilraum des $\mathbb{R}^{2,2}$. Betrachte folgendes Gegenbeispiel. Es gilt

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right] \in M_1,$$

da bei oberen Dreiecksmatrizen die Eigenwerte auf der Diagonalen liegen, also jeweils 1 und 2. Jedoch besitzt

$$2\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

die Eigenwerte 2 und 4 (insbesondere sind weder 1 noch 2 Eigenwerte). Also ist M_1 weder abgeschlossen bzgl. der Addition noch abgeschlossen bzgl. der Skalarmultiplikation und somit kein Teilraum des $\mathbb{R}^{2,2}$. Alternativ: In jedem Teilraum muss das Nullelement (Nullvektor) enthalten sein. Die Nullmatrix $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ besitzt aber den doppelten Eigenwert 0 und liegt somit nicht in M_1 .

(ii) (5 Punkte)

Um zu zeigen, dass M_2 ein Teilraum des $\mathbb{R}_{\leq 2}[x]$ ist, überprüfen wir die drei Teilraumeigenschaften.

• M_2 ist nichtleer:

Es gilt $2 \cdot 0 - 0 = 3 \cdot 0$, also ist $0x^2 + 0x + 0 \in M_2$, d.h. $M_2 \neq \emptyset$.

• M_2 ist abgeschlossen bzgl. der Addition:

Seien $a_1x^2 + b_1x + c_1$, $a_2x^2 + b_2x + c_2 \in M_2$, d.h. $2a_1 - b_1 = 3c_1$ und $2a_2 - b_2 = 3c_2$. Dann ist auch $(a_1x^2 + b_1x + c_1) + (a_2x^2 + b_2x + c_2) = (a_1 + a_2)x^2 + (b_1 + b_2)x + c_1 + c_2 \in M_2$, da

$$2(a_1 + a_2) - (b_1 + b_2) = (2a_1 - b_1) + (2a_2 - b_2) = c_1 + c_2.$$

 \bullet M_2 ist abgeschlossen bzgl. der skalaren Multiplikation:

Seien $\alpha \in \mathbb{R}$ und $ax^2 + bx + c \in M_2$, d.h. 2a - b = 3c. Dann ist auch $\alpha(ax^2 + bx + c) = (\alpha a)x^2 + (\alpha b)x + (\alpha c) \in M_2$, da

$$2(\alpha a) - (\alpha b) = \alpha(2a - b) = \alpha(3c) = 3(\alpha c).$$

Also ist M_2 ein Teilraum des $\mathbb{R}_{\leq 2}[x]$.