
Machine Learning I Exam from 24.09.2020

This document is not official; it is not endorsed by the university or the lecturer.

120 minutes, no auxiliary tools allowed, 20 + 15 + 25 + 20 + 20 = 100 points.

1. Multiple choice (4× 5 = 20 Points)

Answer the following multiple choice questions.

(a) The Bayes error is

� the lowest error of a linear classifier.

� the expected error of a random linear classifier.

� the error of any nonlinear classifier.

� the error of a naive Bayes classifier .

(b) The Fisher linear discriminant find the projection y = wTx of the data that maximises

� the margin between the two data generating distributions.

� the within-class variance divided by the between-class variance.

� the margin between the means of the data generating distributions.

� the between-class variance divided by the within-class variance.

(c) A biased estimator is used to

� make the estimator less affected by the sampling of the data.

� make the estimation procedure more sensitive to the sample data.

� reduce the risk of underfitting the data.

� None of the above, an unbiased estimator is always better.

(d) Let x1, . . . , xN ∈ Rd be unlabelled observations. Consider a Gaussian kernel and its

Gram matrix K ∈ RN×N . Which is always true?

� KTK = I.

� KKT = I.

� ∀u ∈ RN uKu ≥ 0.

� ∀u ∈ RN uKu ≤ 0.
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2. Neural Networks (10 + 5 = 15 Points)

(a) Build a neural network that models the function f : R2 → {0, 1}, x 7→ 1min(x1,x2)≤−1(x)

with at most three neurons of the form aj = step (
∑
i wijai + bj), where step(z) :=

1{z≥0}(z). State weights and biases.

Define a1 = step(−x1 − 1) and a2 =

step(−x2 − 1) to check if x1 ≤ −1 and

x2 ≤ −1. If (at least) one of them gives

1, we want the output to be one and zero

else. Thus a3 = step(a1 + a2 − 1).
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a1

−1

a2
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−1

−1

a3

−11

1

(b) State the number of neurons needed to build a neural network that models f : Rd → {0, 1},
x 7→ 1‖x‖∞≤5(x) and describe the weights and bias of one such neurons.

We need 2d + 1 neurons. We have that ‖x‖∞ ≤ 5 if and only if −5 ≤ xk ≤ 5 for

all k ∈ {1, . . . , d}. For k ∈ {1, . . . , d}, we thus take a2k−1 = step(5 − xk) (to check

that xk ≤ 5) and a2k = step(xk + 5) (to check that xk ≥ −5). The output neuron is

a2d+1 = step(
∑2d
k=1

1
2dak − 1), as we only want to output 1 if all other aj give 1.

3. Maximum likelihood and Bayes (5× 5 = 25 Points)

People queue at the post office and their i.i.d processing times are D = (x1, x2, x3) = (1, 1, 2).

The data generating distribution is P (xi = k) = (1− θ)k−1θ, where k ∈ N∪{∞} and θ ∈ [0, 1]

is unknown.

(a) State likelihood function P (D|θ).

P (D|θ) = (1− θ)1−1θ · (1− θ)1−1θ · (1− θ)2−1θ = θ3(1− θ).

(b) Find the maximum likelihood parameter θ̂.

We have θ̂ = arg maxθ P (D|θ). We have d
dθ θ

3(1− θ) = 3θ2 − 4θ3, so θ = 0 or θ = 3
4 .

We also have to check the boundary of the definition domain of P (D|θ): we have

P (D|0) = 0 = P (D|1) < P (D| 34 ) = 27
64 , so θ̂ = 3

4 .

(c) Evaluate P (x4 > 1|θ̂).

Since x4 can be every integer between 2 and ∞, we have

P (x4 > 1|θ̂) =

∞∑
k=1

P (xi = k) =

∞∑
k=1

(
1− θ̂

)k−1

θ̂ =

∞∑
k=2

(
1− 3

4

)k−1
3

4

=
3

4

∞∑
k=1

(
1

4

)k
=

3

4
· 1

3
=

1

4
.
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The sum is a geometric series so we can get the finite expression 1
3 for it.

Simpler computation using the complement:

P (x4 > 1|θ̂) = 1− P (x4 = 1|θ̂) = 1− (1− θ̂)1−1θ̂ = 1− θ̂ = 1− 3

4
=

1

4
.

We now adopt a Bayesian view point on this problem, where we assume a prior distribution

for the parameter θ to be defined as:

p(θ) =

1, θ ∈ [0, 1],

0 else.

(d) Show that the posterior distribution p(θ|D) is 20(1−θ)θ3 for θ ∈ [0, 1] and zero elsewhere.

By the theorem of Bayes and the law of total probability we have

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫

R p(D|θ)p(θ) dθ
=
θ3(1− θ) · 1[0,1](θ)∫ 1

0
θ3(1− θ) dθ

=
θ3(1− θ) · 1[0,1](θ)

1
20

= 20(1− θ)θ3 · 1[0,1](θ)

(e) Evaluate P (x4 > 1|D) =
∫
p(x|θ)p(θ|D) dθ.

We have

P (x4 > 1|D) = 1− P (x4 = 1|θ̂) = 1−
∫

20(1− θ)θ3 · 1[0,1](θ) · θ(1− θ)1−1 dθ

= 1− 20

∫ 1

0

θ4(1− θ) dθ = 1− 20

∫ 1

0

θ4 − θ5 dθ = 1− 20

(
1

5
− 1

6

)
= 1− 2

3
=

1

3

4. Lagrange multipliers (4× 5 = 20 Points)

Let Σ ∈ Rd×d be a positive semidefinite matrix. Consider the constrained maximisation problem:

max
w∈Rd

‖w‖2 subject to wTΣ−1w = 1

(a) State the Lagrange function.

L(w, λ) := ‖w‖2 + λ(1− wTΣ−1w).

(b) Show that the problem is an eigenvalue problem of Σ.
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For w to be optimal, we need

∂L(w, λ)

∂w
= 2w − 2λΣ−1w

!
= 0 ⇐⇒ w = λΣ−1w ⇐⇒ Σw = λw,

so w has to be a eigenvector of Σ with eigenvalue λ.

(c) Show that the solution is the eigenvector associated to the highest eigenvalue of Σ.

From the constraint wTΣ−1w = 1 and w = λΣ−1w we get (as Σ is symmetric)

‖w‖2 = wTw = λwTΣ−1w = λ.

Thus the value of the eigenvalue coincides with the quantity we want to maximise.

(d) Let w1, . . . , wT be a sequence of vectors where wt is obtained from wt−1 as the solution of

the constraint problem

max
z∈Rd

zTwt−1 subject to zTΣ−1z = 1.

Find a closed form solution of wt as a function of wt−1.

The Lagrangian is

L(z, λ) := zTwt−1 + λ(1− zTΣ−1z).

In order for z to be optimal, we require

∂L(z, λ)

∂z
= wt−1 − 2λΣ−1z

!
= 0 ⇐⇒ wt−1 = 2λΣ−1z ⇐⇒ z =

1

2λ
Σwt−1.

Plugging the second last equality into the constraint zTΣ−1z = 1, we get

zTwt−1 = 2λzTΣ−1z = 2λ

and using the last equality we get

2λ = zTwt−1 =
1

2λ
wT
t−1Σwt−1,

implying

2λ =
√
wT
t−1Σwt−1,

as Σ is positive semidefinite (so we don’t have to consider −√. . .). We thus get

wt = z =
Σwt−1√
wT
t−1Σwt−1

=
Σwt−1

‖Σwt−1‖Σ−1

with ‖x‖2Σ−1 := xTΣ−1x.
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5. Ridge regression (10 + 10 = 20 Points)

Consider the problem

min
w∈Rd

‖y −Xw‖2 subject to ‖w‖∞ ≤ C,

where C > 0 is a constant, y ∈ RN and X ∈ RN×d is the data matrix.

(a) Show that the problem is equivalent to

min
w∈Rd

wTXTXw − 2yTXw subject to − C ≤ wi ≤ C ∀i ∈ {1, . . . , d}

We have

‖y −Xw‖2 = (y −Xw)T(y −Xw) = yTy − yTXw − (Xw)Ty + (Xw)TXw

= yTy − 2yTXw + wTXTXw.

Since yTy is independent of w, we can neglect it when minimising over w. We have

yTXw = (Xw)Ty, as it is a scalar and so it is equal to its transpose.

Furthermore, ‖w‖∞ = max{|w1|, . . . , |wd|}, so ‖w‖∞ ≤ C is equivalent to |wk| ≤ C

for all k ∈ {1, . . . , d}, i.e. −C ≤ wk ≤ C for all k ∈ {1, . . . , d}.

(b) At our disposal we have a quadratic solver QP(Q, l, A, b), which solves the generic

quadratic problem

min
v
vTQv + `Tv subject to Av ≤ b.

Write the numpy code constructing the arrays Q, `,A and b from X, y and C.

def Reg(X, y, C):

Q = X.T.dot(X)

l = - 2 * y.T.dot(X).T

d = Q.shape[0]

A = np.concatenate([np.identity(d), -1 * np.identity(d)], axis=0)

b = C * np.ones(2 * d)

t = QP(Q, l, A, b)

return t

The grey code was given.

Thanks to everyone contributing to this account of the exam and its solutions :)

5


