Machine Learning I Exam from 24.09.2020

This document is not official; it is not endorsed by the university or the lecturer.

120 minutes, no auxiliary tools allowed, $20+15+25+20+20=100$ points.

1. Multiple choice ($4 \times 5=20$ Points)

Answer the following multiple choice questions.
(a) The Bayes error isthe lowest error of a linear classifier.the expected error of a random linear classifier.

- the error of any nonlinear classifier.the error of a naive BAYES classifier .
(b) The Fisher linear discriminant find the projection $y=w^{\top} x$ of the data that maximisesthe margin between the two data generating distributions.the within-class variance divided by the between-class variance.the margin between the means of the data generating distributions.

■ the between-class variance divided by the within-class variance.
(c) A biased estimator is used to

- make the estimator less affected by the sampling of the data.make the estimation procedure more sensitive to the sample data.reduce the risk of underfitting the data.None of the above, an unbiased estimator is always better.
(d) Let $x_{1}, \ldots, x_{N} \in \mathbb{R}^{d}$ be unlabelled observations. Consider a Gaussian kernel and its Gram matrix $K \in \mathbb{R}^{N \times N}$. Which is always true?$K^{T} K=I$.$K K^{T}=I$.
- $\forall u \in \mathbb{R}^{N} u K u \geq 0$.$\forall u \in \mathbb{R}^{N} u K u \leq 0$.

2. Neural Networks $(10+5=15$ Points)

(a) Build a neural network that models the function $f: \mathbb{R}^{2} \rightarrow\{0,1\}, x \mapsto \mathbb{1}_{\min \left(x_{1}, x_{2}\right) \leq-1}(x)$ with at most three neurons of the form $a_{j}=\operatorname{step}\left(\sum_{i} w_{i j} a_{i}+b_{j}\right)$, where $\operatorname{step}(z):=$ $\mathbb{1}_{\{z \geq 0\}}(z)$. State weights and biases.

Define $a_{1}=\operatorname{step}\left(-x_{1}-1\right)$ and $a_{2}=$ $\operatorname{step}\left(-x_{2}-1\right)$ to check if $x_{1} \leq-1$ and $x_{2} \leq-1$. If (at least) one of them gives 1 , we want the output to be one and zero else. Thus $a_{3}=\operatorname{step}\left(a_{1}+a_{2}-1\right)$.

(b) State the number of neurons needed to build a neural network that models $f: \mathbb{R}^{d} \rightarrow\{0,1\}$, $x \mapsto \mathbb{1}_{\|x\|_{\infty} \leq 5}(x)$ and describe the weights and bias of one such neurons.

We need $2 d+1$ neurons. We have that $\|x\|_{\infty} \leq 5$ if and only if $-5 \leq x_{k} \leq 5$ for all $k \in\{1, \ldots, d\}$. For $k \in\{1, \ldots, d\}$, we thus take $a_{2 k-1}=\operatorname{step}\left(5-x_{k}\right)$ (to check that $\left.x_{k} \leq 5\right)$ and $a_{2 k}=\operatorname{step}\left(x_{k}+5\right)$ (to check that $x_{k} \geq-5$). The output neuron is $a_{2 d+1}=\operatorname{step}\left(\sum_{k=1}^{2 d} \frac{1}{2 d} a_{k}-1\right)$, as we only want to output 1 if all other a_{j} give 1 .

3. Maximum likelihood and Bayes ($5 \times 5=25$ Points)

People queue at the post office and their i.i.d processing times are $D=\left(x_{1}, x_{2}, x_{3}\right)=(1,1,2)$. The data generating distribution is $P\left(x_{i}=k\right)=(1-\theta)^{k-1} \theta$, where $k \in \mathbb{N} \cup\{\infty\}$ and $\theta \in[0,1]$ is unknown.
(a) State likelihood function $P(D \mid \theta)$.

$$
P(D \mid \theta)=(1-\theta)^{1-1} \theta \cdot(1-\theta)^{1-1} \theta \cdot(1-\theta)^{2-1} \theta=\theta^{3}(1-\theta) .
$$

(b) Find the maximum likelihood parameter $\hat{\theta}$.

We have $\hat{\theta}=\arg \max _{\theta} P(D \mid \theta)$. We have $\frac{\mathrm{d}}{\mathrm{d} \theta} \theta^{3}(1-\theta)=3 \theta^{2}-4 \theta^{3}$, so $\theta=0$ or $\theta=\frac{3}{4}$. We also have to check the boundary of the definition domain of $P(D \mid \theta)$: we have $P(D \mid 0)=0=P(D \mid 1)<P\left(D \left\lvert\, \frac{3}{4}\right.\right)=\frac{27}{64}$, so $\hat{\theta}=\frac{3}{4}$.
(c) Evaluate $P\left(x_{4}>1 \mid \hat{\theta}\right)$.

Since x_{4} can be every integer between 2 and ∞, we have

$$
\begin{aligned}
P\left(x_{4}>1 \mid \hat{\theta}\right) & =\sum_{k=1}^{\infty} P\left(x_{i}=k\right)=\sum_{k=1}^{\infty}(1-\hat{\theta})^{k-1} \hat{\theta}=\sum_{k=2}^{\infty}\left(1-\frac{3}{4}\right)^{k-1} \frac{3}{4} \\
& =\frac{3}{4} \sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=\frac{3}{4} \cdot \frac{1}{3}=\frac{1}{4} .
\end{aligned}
$$

The sum is a geometric series so we can get the finite expression $\frac{1}{3}$ for it.
Simpler computation using the complement:

$$
P\left(x_{4}>1 \mid \hat{\theta}\right)=1-P\left(x_{4}=1 \mid \hat{\theta}\right)=1-(1-\hat{\theta})^{1-1} \hat{\theta}=1-\hat{\theta}=1-\frac{3}{4}=\frac{1}{4}
$$

We now adopt a Bayesian view point on this problem, where we assume a prior distribution for the parameter θ to be defined as:

$$
p(\theta)= \begin{cases}1, & \theta \in[0,1] \\ 0 & \text { else }\end{cases}
$$

(d) Show that the posterior distribution $p(\theta \mid D)$ is $20(1-\theta) \theta^{3}$ for $\theta \in[0,1]$ and zero elsewhere.

By the theorem of Bayes and the law of total probability we have

$$
\begin{aligned}
p(\theta \mid D) & =\frac{p(D \mid \theta) p(\theta)}{p(D)}=\frac{p(D \mid \theta) p(\theta)}{\int_{\mathbb{R}} p(D \mid \theta) p(\theta) \mathrm{d} \theta}=\frac{\theta^{3}(1-\theta) \cdot \mathbb{1}_{[0,1]}(\theta)}{\int_{0}^{1} \theta^{3}(1-\theta) \mathrm{d} \theta} \\
& =\frac{\theta^{3}(1-\theta) \cdot \mathbb{1}_{[0,1]}(\theta)}{\frac{1}{20}}=20(1-\theta) \theta^{3} \cdot \mathbb{1}_{[0,1]}(\theta)
\end{aligned}
$$

(e) Evaluate $P\left(x_{4}>1 \mid D\right)=\int p(x \mid \theta) p(\theta \mid D) \mathrm{d} \theta$.

We have

$$
\begin{aligned}
P\left(x_{4}>1 \mid D\right) & =1-P\left(x_{4}=1 \mid \hat{\theta}\right)=1-\int 20(1-\theta) \theta^{3} \cdot \mathbb{1}_{[0,1]}(\theta) \cdot \theta(1-\theta)^{1-1} \mathrm{~d} \theta \\
& =1-20 \int_{0}^{1} \theta^{4}(1-\theta) \mathrm{d} \theta=1-20 \int_{0}^{1} \theta^{4}-\theta^{5} \mathrm{~d} \theta=1-20\left(\frac{1}{5}-\frac{1}{6}\right) \\
& =1-\frac{2}{3}=\frac{1}{3}
\end{aligned}
$$

4. Lagrange multipliers ($4 \times 5=20$ Points)

Let $\Sigma \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Consider the constrained maximisation problem:

$$
\max _{w \in \mathbb{R}^{d}}\|w\|^{2} \quad \text { subject to } \quad w^{\top} \Sigma^{-1} w=1
$$

(a) State the Lagrange function.

$$
L(w, \lambda):=\|w\|^{2}+\lambda\left(1-w^{\top} \Sigma^{-1} w\right)
$$

(b) Show that the problem is an eigenvalue problem of Σ.

For w to be optimal, we need

$$
\frac{\partial L(w, \lambda)}{\partial w}=2 w-2 \lambda \Sigma^{-1} w \stackrel{!}{=} 0 \Longleftrightarrow w=\lambda \Sigma^{-1} w \Longleftrightarrow \Sigma w=\lambda w
$$

so w has to be a eigenvector of Σ with eigenvalue λ.
(c) Show that the solution is the eigenvector associated to the highest eigenvalue of Σ.

From the constraint $w^{\top} \Sigma^{-1} w=1$ and $w=\lambda \Sigma^{-1} w$ we get (as Σ is symmetric)

$$
\|w\|^{2}=w^{\top} w=\lambda w^{\top} \Sigma^{-1} w=\lambda
$$

Thus the value of the eigenvalue coincides with the quantity we want to maximise.
(d) Let w_{1}, \ldots, w_{T} be a sequence of vectors where w_{t} is obtained from w_{t-1} as the solution of the constraint problem

$$
\max _{z \in \mathbb{R}^{d}} z^{\top} w_{t-1} \quad \text { subject to } \quad z^{\top} \Sigma^{-1} z=1
$$

Find a closed form solution of w_{t} as a function of w_{t-1}.
The Lagrangian is

$$
L(z, \lambda):=z^{\top} w_{t-1}+\lambda\left(1-z^{\top} \Sigma^{-1} z\right)
$$

In order for z to be optimal, we require

$$
\frac{\partial L(z, \lambda)}{\partial z}=w_{t-1}-2 \lambda \Sigma^{-1} z \stackrel{!}{=} 0 \Longleftrightarrow w_{t-1}=2 \lambda \Sigma^{-1} z \Longleftrightarrow z=\frac{1}{2 \lambda} \Sigma w_{t-1}
$$

Plugging the second last equality into the constraint $z^{\top} \Sigma^{-1} z=1$, we get

$$
z^{\top} w_{t-1}=2 \lambda z^{\top} \Sigma^{-1} z=2 \lambda
$$

and using the last equality we get

$$
2 \lambda=z^{\top} w_{t-1}=\frac{1}{2 \lambda} w_{t-1}^{\top} \Sigma w_{t-1}
$$

implying

$$
2 \lambda=\sqrt{w_{t-1}^{\top} \Sigma w_{t-1}}
$$

as Σ is positive semidefinite (so we don't have to consider $-\sqrt{\cdots}$). We thus get

$$
w_{t}=z=\frac{\Sigma w_{t-1}}{\sqrt{w_{t-1}^{\top} \Sigma w_{t-1}}}=\frac{\Sigma w_{t-1}}{\left\|\Sigma w_{t-1}\right\|_{\Sigma^{-1}}} \quad \text { with }\|x\|_{\Sigma^{-1}}^{2}:=x^{\top} \Sigma^{-1} x
$$

5. Ridge regression ($10+10=20$ Points)

Consider the problem

$$
\min _{w \in \mathbb{R}^{d}}\|y-X w\|^{2} \quad \text { subject to } \quad\|w\|_{\infty} \leq C
$$

where $C>0$ is a constant, $y \in \mathbb{R}^{N}$ and $X \in \mathbb{R}^{N \times d}$ is the data matrix.
(a) Show that the problem is equivalent to

$$
\min _{w \in \mathbb{R}^{d}} w^{\top} X^{\top} X w-2 y^{\top} X w \quad \text { subject to } \quad-C \leq w_{i} \leq C \forall i \in\{1, \ldots, d\}
$$

We have

$$
\begin{aligned}
\|y-X w\|^{2} & =(y-X w)^{\top}(y-X w)=y^{\top} y-y^{\top} X w-(X w)^{\top} y+(X w)^{\top} X w \\
& =y^{\top} y-2 y^{\top} X w+w^{\top} X^{\top} X w
\end{aligned}
$$

Since $y^{\top} y$ is independent of w, we can neglect it when minimising over w. We have $y^{\top} X w=(X w)^{\top} y$, as it is a scalar and so it is equal to its transpose.

Furthermore, $\|w\|_{\infty}=\max \left\{\left|w_{1}\right|, \ldots,\left|w_{d}\right|\right\}$, so $\|w\|_{\infty} \leq C$ is equivalent to $\left|w_{k}\right| \leq C$ for all $k \in\{1, \ldots, d\}$, i.e. $-C \leq w_{k} \leq C$ for all $k \in\{1, \ldots, d\}$.
(b) At our disposal we have a quadratic solver $\mathrm{QP}(\mathrm{Q}, \mathrm{l}, \mathrm{A}, \mathrm{b})$, which solves the generic quadratic problem

$$
\min _{v} v^{\top} Q v+\ell^{\top} v \quad \text { subject to } \quad A v \leq b
$$

Write the numpy code constructing the arrays Q, ℓ, A and b from X, y and C.

```
def Reg(X, y, C):
    Q = X.T.dot(X)
    l = - 2 * y.T.dot(X).T
    d = Q.shape[0]
    A = np.concatenate([np.identity(d), -1 * np.identity(d)], axis=0)
    b = C * np.ones(2 * d)
    t = QP(Q, l, A, b)
return t
```

The grey code was given.

Thanks to everyone contributing to this account of the exam and its solutions :)

