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Exercise 1 (6 Points)

Please decide, whether or not the following statements are correct. For every right decision you

will earn one point. For every wrong decision, one point will be taken away. However, you are

not able to get less than zero points and not more than six points for this task.

Statement True False

An advantage of training neural networks using gradient descent based

methods, such as backpropagation, is that they can not get stuck in local

minima of the loss function.

×
The double descent curve shows that over-parametrization is in general

useful.
×

A relevance map (Mp)p is conservative if
�

p Mp(x) = R�(Φ)(x). ×
Continuous function on compact domain can be approximated well by

neural network with three layers.
×

In the direct inversion approach the neural network is only used for

denoising.
×

? ×

Exercise 2 (6 Points)

Consider the hypothesis space H := span{ϕ1,ϕ2}, where ϕ1,ϕ2 : R → R are given as

ϕ1(x) :=
√
21[1,2)(x), ϕ2(x) := (1−

√
2)x− 1 + 2

√
2)1[1,3](x).

Furthermore, let S := ((x1, y1), (x2, y2), (x3, y3)) := ((1, 1), (2, ?), (3, 1.5)) and y := (y1, y2, y3).

Compute the matrix A := (ϕj(xi))i,j and use it to compute the empirical target function

fH,S ∈ H which minimizes the empirical error ES(fH,S).

Remark: You shall not compute the error ES(fH, S).
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We compute

A =




√
2

√
2

0 1

0 2−
√
2




As the rows are linearly independent, the solution to argminz �Az−y� is given by w = A+y,

where A+ := (ATA)−1AT is the pseudoinverse of A. Tedious calculation yields

A+ =
1

8
√
2− 14



8− 7

√
2 2 4− 2

√
2

0 −2 2
√
2− 4


 .

and therefore fH,S = w1ϕ1 + w2ϕ2.

Exercise 3 (6 Points)

Consider the following neural network Φ := ((A1, b1), (A2, b2), A3, b3)), where

A1 :=




5 1 0

3 0 6

0 2 4




, b1 :=




6

0

2




, A2 :=




1 0 0

5 0 0

0 2 3

3 1 0




, b2 :=




?

?

?

?




, A3 :=




1

2

7

9




�

Visualize the architecture of Φ as a graph, which includes the weights and biases. Non-existent

edges (caused by zero weights) shall not be visualized.
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Exercise 4 (7 + 3 Points)

1. Let � be the ReLU and

f : R2 → R, x �→




−2, if x1 ≥ 0,

0, else.

Construct a neural network Φε with one hidden layer such that
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(a) |R�(Φε)(x)− f(x)| ≤ 2 · 1[0,ε2](x1),

(b) −2 ≤ Φε(x) ≤ 0 for all x ∈ R2,

(c) �f −R�(Φε)�L2([−1,1]2) ≤ 2ε.

2. For a > 0 and g : Rd → R define Tag(x) := ag(ax). Furthermore, let Φ be a neural network

such that Rσ(Φ) : Rd → R. Construct a neural network Φ̃ such that Rσ(Φ̃) = Ta Rσ(Φ).

1. Choose Φε := ((Aε
1, b1, A2, b2)), where

Aε
1 :=



ε−2 0

ε−2 0


 , b1 :=




0

−1


 , A2 :=



−2

2


 , b2 = 0.

Proof. We have

R�(Φε(x)) = A2�(A
ε
1x+ b1) = −2�(ε−2x1) + 2�(ε−2x1 − 1) =: R(x1).

Let x1 ∈ [0, ε2]. Then we have R(x1) = −2ε−2x1. Thus

|R(x1)− f(x)| =
��− 2ε−2x1 − (−2)

�� = 2
��1− ε−2x1

�� = 2(1− ε−2x1) ≤ 2.

For x1 < 0 we have R(x1) = 0 and for x1 > ε2 we have

R(x1) = −2(ε−2x1) + 2(ε−2x1 − 1) = −2.

Finally with Fubinis theorem we have

�f −R�(Φε)�2L2([−1,1]2) =

� 1

−1

� 1

−1

|f(x, y)−R(x)|2 dx dy

= 1 ·
� 1

−1

��−2 · 1[0,∞)(x)−R(x)
��2 dx

≤
� 0

−1

|0− 0|2 dx+

� ε2

0

|2|2 dx+

� 1

ε2
(−2− (−2))2 dx

= 0 +

� ε2

0

|2|2 dx+ 0 = 4ε2,

implying �f −R�(Φε)�L2([−1,1]2) ≤ 2ε.

2. If Φ = ((Ak, bk))
L
k=1, then choose Φ̃ := ((Ãk, b̃k))

L
k=1, where

Ãk = aAk, b̃k = abk, for k ∈ {1, L} and Ãk = Ak, b̃k = bk for k ∈ {2, . . . , L− 1}.

Exercise 5 (3 + 7 Points)

1. Let X be a set and H ⊂ {h : X → {0, 1}}. Define the VC-dimension of H, VC- dim(H).

2. Consider X := [0, 1] and H := {1[s,t] | s, t ∈ [0, 1]}. What is the VC- dim(H)?
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1. For S ⊂ X the restriction of H to S is H|S := {h|S : h ∈ H}. Then VC- dim(H) :=

sup
�
m ∈ N : sup|S|≤m |H|S | = 2m

�
.

2. (a) Claim: VC- dim(H) ≥ 2.

Proof. Let a and b be two points in [0, 1] with different x-coordinates a1 �= b1

and the labels 0 and 1. Choose s = a1 and t = a1+b1
2 .

If they are labelled differently the construction is analogous.

(b) Claim: VC- dim(H) < 2.

Proof. Let (x, y, z) := ((0, 0), (0, 0.5), (0, 1)) ⊂ [0, 1] be three points with the

labels 1, 0, 1. For the points to be classified correctly we need the scattering

function f to fulfill f(0) = f(1) = 1 but f(0.5) = 0, which is impossible as

f = 1[s,t] for s < t ∈ [0, 1].

Exercise 6 (4 + 1 + 3 Points)

1. Which kinds of problems can be solved by the Douglas-Rachford-Algorithm? Explain

the steps.

2. Which step can be improved by neural networks?

3. Describe one other instance where deep learning is used to solve inverse problems.

1. Explain inverse problems . . .

Douglas-Rachford: Define γ > 0 and the proximal operator

proxf (v) := argmin
z

f(z) +
1

2
�z − v�2

in order to solve

min
x∈Rd

�Ax− y�2 + αR(x)

by the ”splitting” iteration

xk+1 := proxγαR(vk), vk+1 := vk + proxγ�A·−y�2(2xk+1 − vk)− xk+1.

2. The proximal operator costly to compute analytically so we use a neural network in

this step.

3. For example: MRI samples Radon transform, difficult if you can’t have all angles,

reconstruction / direct inversion with filtered backpropagation (FBP), train CNN to

remove noise. Without taking FBP, CNN needs to learn physics of CT . . .
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