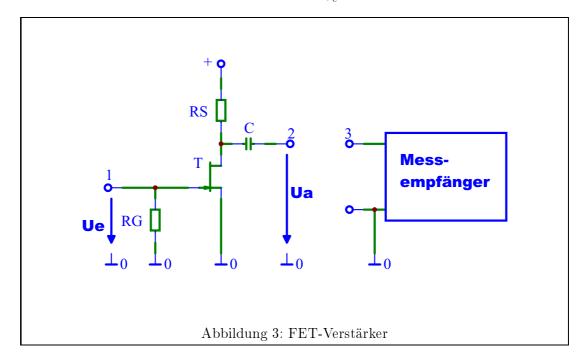
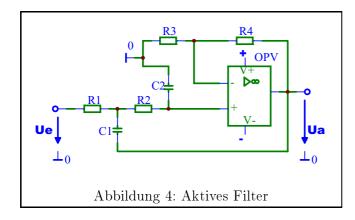
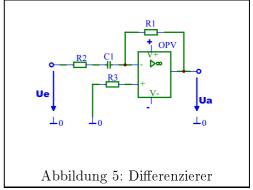

1. Transistor, Kleinsignalverhalten



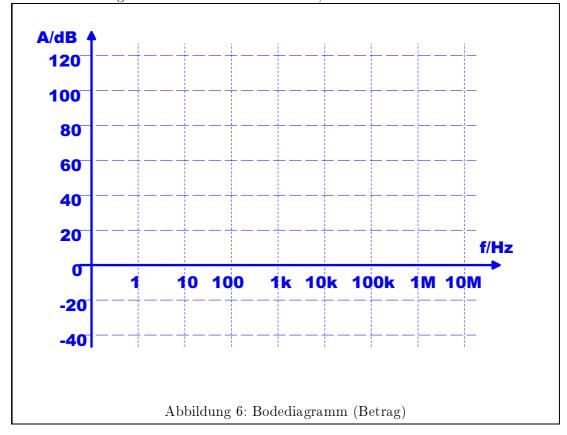
- (a) In Bild 1unten ist eine Schaltung widergegeben, deren zwei Transistoren durch das Ersatzschaltbild (Abb.1oben) beschrieben werden.
 - i. Um welche Schaltung handelt es sich? Welche Aufgabe hat sie?
 - ii. Welche Gleichspannung stellt sich zwischen 1 und 1' im Betrieb etwa ein?
 - iii. Zeichnen Sie das Kleinsignalersatzschaltbild.
 - iv. Die verwendeten Transistoren sollen die Stromverstärkung B besitzen. Begründen Sie, warum $S \approx B \cdot y_1$ gilt. $(S = y_{21}, y_1 = y_{11})$
 - v. Ermitteln Sie I_e und I_a aus dem Kleinsignalersatzschaltbild als Funktion von U_e .
 - vi. Welches Verhältnis ergibt sich zwischen dem gespiegelten Strom I_a und dem Referenzstrom I_e ? (Unter 1(a)iv) war $S \approx B \cdot y_1$ gefragt. Berücksichtigen Sie dies hier und ermitteln Sie das Verhältnis für B=98!)
- (b) Die Schaltung wird nun zum sogenannten "Wilson-Spiegel" (Abb.2) erweitert. T_3 ist bezüglich T_1 und T_2 baugleich.
 - i. Welche Gleichspannung stellt sich im Betrieb zwischen 2 und 2' etwa ein?
 - ii. Zeichnen Sie wiederum das Kleinsignalersatzschaltbild. (Hinweis: Zeichnen Sie das Resultat aus 1(a)iii) ab und ergänzen Sie es nur durch die Elemente von T_3 .)
 - iii. Tragen Sie die Steuerspannung für die Stromquelle von T_3 ein.
- (c) Der Stromspiegel arbeitet nun so, dass I_a " der Referenzstrom und I_e " der Spiegelstrom wird.
 - i. Ermitteln Sie die Ströme I_a " und I_e " in Abhängigkeit von U_e und U_a .
 - ii. Geben Sie nun sowohl I_e " als auch I_a " nur in Abhängigkeit von U_e an. (Hinweis: Durch Ansatz der Knotengleichung am Punkt 1 lässt sich das Verhältnis $\frac{U_a}{U_e}$ ermitteln. (Ergebnis: $2 + \frac{y_1}{y_1 + S}$))
 - iii. Welches Verhältnis zwischen dem gespiegelten Strom (jetzt I_e ") und dem Referenzstrom (jetzt I_a ") ergibt sich? (Hinweis: $S \approx B \cdot y_1$ berücksichtigen!) Welcher Wert ergibt sich für B=100?

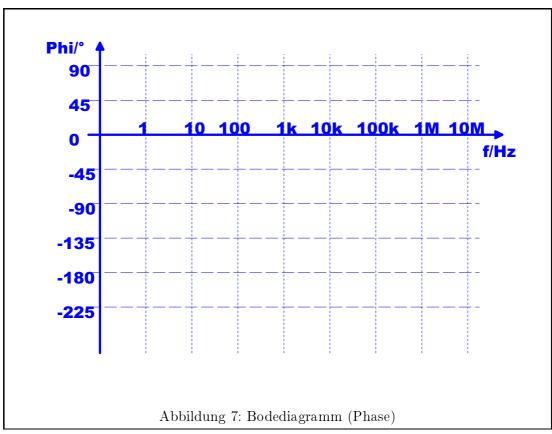

2. Rauschen


Die Rauscheigenschaften der nachstehenden FET-Verstärkerschaltung (Abb.3) sollen untersucht werden. Ihre Spannungsverstärkung beträgt $V = \frac{U_a}{U_e}$.

- (a) Welche der Bauelemente zeigen thermisches Rauschen, welche Schrotrauschen und welche rauschen nicht?
- (b) Zeichnen Sie den das Rauschen des Verstärkers beschreibenden Ersatzvierpol, bestehend aus Rauschstromquelle I_{RP} und Rauschspannungsquelle U_{RS} .
- (c) Am Ausgang 2 wird nun mit einem hochohmigen Messempfänger zweimal die Rauschspannung gemessen, einmal bei Leerlauf der Klemme 1 U_R^L , einmal bei Kurzschluss U_R^K . Bei welcher Messung spielt auch das Rauschen von R_G eine Rolle? (Begründen Sie Ihre Antwort!)
- (d) Welche Messung kann zur Ermittlung von I_{RP} und welche zur Ermittlung von U_{RS} dienen?
- (e) Bestimmen Sie die Stärke der Rauschspannungs- und der Rauschstromquelle.

3. Operationsverstärker (OPV), Bodediagramm, Stabilität

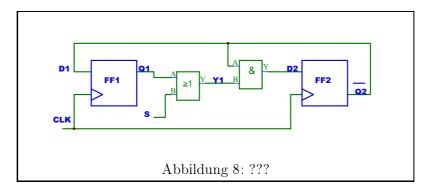



(a) Aktive Filterschaltung

- i. Um welche OPV-Grundschaltung handelt es sich bei der Schaltung in Abb.4?
- ii. Welche Rückkopplungsarten kennen Sie? Welche von diesen werden wie oft in dieser Schaltung benutzt?
- iii. Durch welche Bauelemente wird die frequenzunabhängige Grundverstärkung des OPV eingestellt? Begründen Sie Ihre Antwort und stellen Sie die resultierende Gleichung auf.

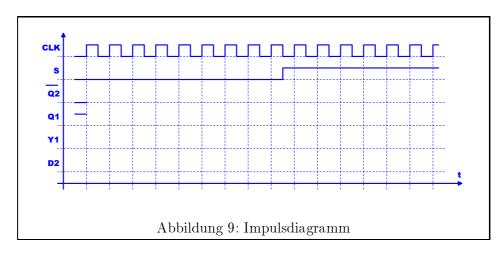
(b) Differenzierschaltung

- i. Zeichnen Sie die Ersatzschaltbilder für k_e und k_r . Berechnen Sie unter Vernachlässigung von R_2 und R_3 die Übertragungsfaktoren k_e und k_r der in Bild 5 gezeigten OPV-Schaltung. Es gilt weiterhin $\tau_1 = R_1 C_1$.
- ii. Der OPV habe eine Grundverstärkung V_O =100000 und ein Verstärkungs-Bandbreite-Produkt GBW=1MHz. Darüberhinaus verfügt dieser OPV über eine interne Kompensation bis 0dB, d.h. er kann bis 0dB als einfacher Tiefpass angesehen werden. Berechnen Sie die erste Grenzfrequenz f_{g1} des OPV's und stellen Sie die Verstärkungsgleichung für V_{OP} auf.
- iii. Zeichnen Sie für $\tau_1 = \frac{1}{20\pi}$ den Rückkoppelfaktor k_r und die OP-Verstärkung V_{OP} sowie die resultierende Schleifenverstärkung V_S nach Betrag und Phase in die entsprechenden Bodediagramme auf dem Aufgabenblatt (Abb.6/7).
- iv. Ist diese Schaltung stabil? (Begründung!)
- v. Berechnen Sie nun unter Einbeziehung von R_2 (aber mit $R_2 \ll R_1$) k_{r2} .
- vi. Zeichnen Sie jetzt k_{r2} so in das Bodediagramm, dass die resultierende Schleifenverstärkung einen Phasenrand PR = 45 Grad bekommt.
- vii. Wie groß muss R_2 im Verhältnis zu R_1 sein, um diesen Phasenrand einzuhalten?
- viii. Welcher Effekt wird durch den Einbau von R_3 vermindert? Wie groß muss R_3 bemessen werden?



4. Digitale Schaltungen

(a) Allgemeine Fragen


- i. Erklären Sie die Unterschiede zwischen transparenten und Master-Slave-FlipFlops.
- ii. Welche Methode versteht man bezüglich der Normalform einer "digitalen" Gleichung unter der Bezeichnung "Disjunkte Konjunktion"?
- iii. Was versteht man unter "Don't Care"-Termen? Erläutern Sie dies anhand eines beliebigen KV-Diagramms mit den vier Eingangsvariablen A, B, C, D und der Ausgangsvariablen Y.

(b) Schaltwerk, Zustands-, Impulsdiagramm

In Bild 8 handelt es sich um die Zusammenschaltung zweier Master-Slave-D-FlipFlops. Durch die dazwischen geschaltete Logik können verschiedene Betriebszustände an der Datenleitung D2 (D-Eingang des rechten FlipFlops) abgenommen werden.

- i. Handelt es sich bei der Schaltung in Bild 8 um ein synchron oder asynchron betriebenes Netzwerk? (Begründung!)
- ii. Wieviele Zustandsspeicher besitzt dieses Netzwerk?
- iii. Kann die Kombination $Q1\overline{Q2} = 00$ für S=0 auftreten? (Begründung!)
- iv. Tragen Sie die Verläufe der Impulsdiagramme für Q1, Y1, D2 und $\overline{Q2}$ in das Diagramm auf dem Aufgabenblatt (Abb.9) ein.
- v. Welche Funktionen ergeben sich in Abhängigkeit von S für den Datenausgang D2?

