Memory Log - Algebraic Process Calculi

SoSe 2023

The following might not be 100% accurate, the process calculus described here is for the most part the "Language of Temporal Ordering Specification"

Defintions

Approximately 10 minutes are given to read and understand the following definitions.
L is the set of action labels. Let $a \in L \cup\{i\}, g \in L \cup\{i, \delta\}, a_{i}, b_{i}, g_{i} \in L(0 \leq i<n)$ be the set of actions.

We define the set of process constants as

$$
C::=P
$$

Where P is the set of processes defined by

$$
\begin{aligned}
P::= & \text { exit } \\
& \text { stop } \\
\text { actions } & a ; P \\
\text { enabling } & P \gg P \\
\text { disabling } & P[>P \\
\text { hiding } & \text { hide }\left[a_{0}, \ldots a_{n}\right] \text { in } P \\
\text { renaming } & P\left[{ }^{a_{0}} / b_{0} \ldots{ }^{a_{n}} / b_{n}\right] \\
\text { parallel composition } & P\left|\left[a_{0}, \ldots a_{n}\right]\right| P \\
\text { constants } & C
\end{aligned}
$$

The transitions are given by

1. exit $\xrightarrow{\delta}$ stop
2. $a ; P \xrightarrow{a} P$
3. if $C:=P, P \xrightarrow{a} P^{\prime}$, then $C \xrightarrow{a} P^{\prime}$
4. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, a \neq \delta$ then $P_{1} \gg P_{2} \xrightarrow{a} P_{1}^{\prime} \gg P_{2}$
5. if $P_{1} \xrightarrow{\delta} P_{2}$ then $P_{1} \gg P_{2} \xrightarrow{i} P_{2}$
6. if $P_{2} \xrightarrow{a} P_{2}^{\prime}$ then $P_{1}\left[>P_{2} \xrightarrow{a} P_{2}^{\prime}\right.$
7. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, a \neq \delta$ then $P_{1}\left[>P_{2} \xrightarrow{a} P_{1}^{\prime}\left[>P_{2}\right.\right.$
8. if $P_{1} \xrightarrow{\delta} P_{1}^{\prime}$ then $P_{1}\left[>P_{2} \xrightarrow{i} P_{2}\right.$
9. if $P_{2} \xrightarrow{a} P_{2}^{\prime}, a \neq \delta$ then $P_{1}\left[>P_{2} \xrightarrow{a} P_{1}\left[>P_{2}^{\prime}\right.\right.$
10. if $P_{2} \xrightarrow{\delta} P_{2}^{\prime}$ then $P_{1}\left[>P_{2} \xrightarrow{\delta} P_{2}^{\prime}\right.$
11. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, a \notin\left\{a_{0}, \ldots a_{n}\right\}$ then hide $\left[a_{0}, \ldots a_{n}\right]$ in $P_{1} \xrightarrow{a}$ hide $\left[a_{0}, \ldots a_{n}\right]$ in P_{1}^{\prime}
12. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, a \in\left\{a_{0}, \ldots a_{n}\right\}$ then hide $\left[a_{0}, \ldots a_{n}\right]$ in $P_{1} \xrightarrow{i}$ hide $\left[a_{0}, \ldots a_{n}\right]$ in P_{1}^{\prime}
13. (renaming rules, they behave as expected and where not needed in the exam)
14. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, a \notin\left\{a_{0}, \ldots a_{n}, \delta\right\}$ then $P_{1}\left|\left[a_{0}, \ldots a_{n}\right]\right| P_{2} \xrightarrow{a} P_{1}^{\prime}\left|\left[a_{0}, \ldots a_{n}\right]\right| P_{2}$
15. if $P_{1} \xrightarrow{a} P_{1}^{\prime}, P_{2} \xrightarrow{a} P_{2}^{\prime}, a \in\left\{a_{0}, \ldots a_{n}, \delta\right\}$ then $P_{1}\left|\left[a_{0}, \ldots a_{n}\right]\right| P_{2} \xrightarrow{a} P_{1}^{\prime}\left|\left[a_{0}, \ldots a_{n}\right]\right| P_{2}^{\prime}$

1st Prompt

Describe the transitions of the following process

$$
(a ; \text { exit }) \gg P
$$

where $P:=i ; P$.

2nd Prompt

Describe the transitions of the following process

$$
(a ; \text { exit })[>P
$$

keeping the definition of P from the first prompt.

3rd Prompt

Change the calculus in such a way that 'enabling' a process dose not require performing an 'internal' (i.e. \xrightarrow{i}) transition.

4th Prompt

Let

$$
\begin{array}{r}
B:=a ; \text { exit } \\
H:=\text { hide }[a] \text { in } B|[a]|(B|[a]| B) .
\end{array}
$$

Describe the transitions.

