Memory Log – Algebraic Process Calculi

SoSe 2023

The following might not be 100% accurate, the process calculus described here is for the most part the "Language of Temporal Ordering Specification"

Defintions

Approximately 10 minutes are given to read and understand the following definitions.

L is the set of action labels. Let $a \in L \cup \{i\}$, $g \in L \cup \{i, \delta\}$, $a_i, b_i, g_i \in L(0 \le i < n)$ be the set of actions.

We define the set of process constants as

$$C := P$$

Where P is the set of processes defined by

P ::=	exit
	stop
actions	a; P
enabling	P >> P
disabling	P[>P
hiding	hide $[a_0, \ldots a_n]$ in P
renaming	$P[{}^{a_0}/{}_{b_0}^{a_n}/{}_{b_n}]$
parallel composition	$P \mid [a_0, \dots a_n] \mid P$
constants	C

The transitions are given by

1. exit $\stackrel{\delta}{\rightarrow}$ stop 2. $a; P \stackrel{a}{\rightarrow} P$ 3. if $C \coloneqq P, P \stackrel{a}{\rightarrow} P'$, then $C \stackrel{a}{\rightarrow} P'$ 4. if $P_1 \stackrel{a}{\rightarrow} P'_1, a \neq \delta$ then $P_1 \gg P_2 \stackrel{a}{\rightarrow} P'_1 \gg P_2$ 5. if $P_1 \stackrel{\delta}{\rightarrow} P_2$ then $P_1 \gg P_2 \stackrel{i}{\rightarrow} P_2$ 6. if $P_2 \stackrel{a}{\rightarrow} P'_2$ then $P_1[>P_2 \stackrel{a}{\rightarrow} P'_2$ 7. if $P_1 \stackrel{a}{\rightarrow} P'_1, a \neq \delta$ then $P_1[>P_2 \stackrel{a}{\rightarrow} P'_1]>P_2$ 8. if $P_1 \stackrel{\delta}{\rightarrow} P'_1$ then $P_1[>P_2 \stackrel{i}{\rightarrow} P_2$ 9. if $P_2 \xrightarrow{a} P'_2$, $a \neq \delta$ then $P_1[>P_2 \xrightarrow{a} P_1[>P'_2]$ 10. if $P_2 \xrightarrow{\delta} P'_2$ then $P_1[>P_2 \xrightarrow{\delta} P'_2]$ 11. if $P_1 \xrightarrow{a} P'_1$, $a \notin \{a_0, \dots a_n\}$ then hide $[a_0, \dots a_n]$ in $P_1 \xrightarrow{a}$ hide $[a_0, \dots a_n]$ in P'_1 12. if $P_1 \xrightarrow{a} P'_1$, $a \in \{a_0, \dots a_n\}$ then hide $[a_0, \dots a_n]$ in $P_1 \xrightarrow{i}$ hide $[a_0, \dots a_n]$ in P'_1 13. (renaming rules, they behave as expected and where not needed in the exam) 14. if $P_1 \xrightarrow{a} P'_1$, $a \notin \{a_0, \dots a_n, \delta\}$ then $P_1 \mid [a_0, \dots a_n] \mid P_2 \xrightarrow{a} P'_1 \mid [a_0, \dots a_n] \mid P_2$ 15. if $P_1 \xrightarrow{a} P'_1$, $P_2 \xrightarrow{a} P'_2$, $a \in \{a_0, \dots a_n, \delta\}$ then $P_1 \mid [a_0, \dots a_n] \mid P_2$

1st Prompt

Describe the transitions of the following process

 $(a; \mathbf{exit}) >> P$

where P := i; P.

2nd Prompt

Describe the transitions of the following process

 $(a; \mathbf{exit}) [> P$

keeping the definition of P from the first prompt.

3rd Prompt

Change the calculus in such a way that 'enabling' a process dose not require performing an 'internal' (i.e. $\stackrel{i}{\rightarrow}$) transition.

4th Prompt

Let

 $B \coloneqq a; \mathbf{exit}$ $H \coloneqq \text{hide } [a] \text{ in } B \mid [a] \mid (B \mid [a] \mid B).$

Describe the transitions.