AGI Exam 03.03.21

1 Structure:

7 tasks in total, each worth 15 points. 1 task per chapter and 1 bonus task with miscellaneous MC-questions.

2 Game Theory

a) Find Nash equilibria (NEs) in example
b) Reduction: Assume we have an Algorithm that finds NEs for 3-player NF-games. How can we use it to find NEs in 2-player NF-games? (Show why reduction is correct)
c) Reduction: Assume we have an Algorithm that finds NEs for 3-action NF-games. How can we use it to find NEs in 2-action NF-games? (Show why reduction is correct)

3 Auction Theory

We want to sell A, B or C an espresso machine. B and C live together, so we can only sell espresso machine to $A,\{B, C\}$ or to no one.
a) Model scenario as Single-Parameter environment
b) Find Social-Welfare maximizing + DSIC allocation and payment
c) Find Revenue-maximizing allocation + payment

4 Matchings

a) Demonstrate Gale Shapley on a given example: In which round is which edge rejected?
b) Prove that a rejected edge can never be part of any stable matchings
c) Show using b) that man-proposing Gale-Shapley is man-optimal

5 Information Elicitation

An example was given.
a) Which scoring rule is strictly proper in the example?
b) Calculate $1 /$ Prior payment for the example
c) Does $s_{\text {quad }}$ incentivize truthfulness in the example? Calculate expected payments for (un)truthful reporting

6 ComSoc

Def: Condorcet-Loser (CL) loses all pairwise majority comparisons
Def: CL-consistent: If CL exists, it is never chosen by the rule
a) construct preference profile with

- 5 alternatives
- odd number of voters
- strict preferences
- CW exists
- CW is never ranked first
- CL exists
b) Is plurality CL-consistent?
c) Is lexicographic SMC CL-consistent?
d) Does this hold: A rule is CL-consistent iff it is CW-consistent?

7 Price of Anarchy/Network Formation game

An example graph was given.
a) A path was given. Is it a Pure Nash Equilibrium (PNE) in the example?
b) Find all PNEs in the example and explain why they are PNEs
c) Calculate PoS and PoA

8 Bonus

a) Something with Bulow-Klemperer
b) Can a particular example be modelled as an Atomic Routing game?

