Fachbereich 3 - Mathematik

Ferus / Krumke / Hauser

Probeklausur (Rechenteil) Analysis I für Ingenieure

Name:	Vorname:		
MatrNr.:	Studiengang:		
ch wünsche den Aushang der Ergebn Matr.–Nr. am Schwarzen Brett und im	isse meiner Klausur unter Angabe meiner WWW ¹ Ja / Nein Unterschrift		
Veben einem einseitig handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsnittel zugelassen. Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden. Die Gesamtdausur ist mit 16 von 40 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindesten 5 von 20 Punkten erreicht werden.			
	Rechenaufgaben. Geben Sie immer den Gearbeitungszeit beträgt eine Stunde .		

1	2	3	4	\sum

Einsichtnahme- und Beschwerdemöglichkeit:

¹ http://www.math.tu-berlin.de/HM/AnalysisI/Aktuell/ING/klausuren.html

Rechenaufgaben

1. Aufgabe

(3 Punkte)

Die Zahlenfolge $(a_n)_{n\geq 1}$ sei durch die folgende Vorschrift rekursiv gegeben:

$$a_1=1$$
 und $a_{n+1}=a_n-\frac{1}{n(n+1)}$ für $n\in\mathbb{N}, n\geq 1$.

Beweisen Sie mit vollständiger Induktion: $a_n = \frac{1}{n}$ für alle $n \ge 1$.

2. Aufgabe

(4 Punkte)

Sei $R \in \mathbb{R} \setminus \{1\}$ fest, aber beliebig. Welche geometrische Figur wird durch die Gleichung Re $\left(\frac{z+1}{z-1}\right) = R$, für $z \in \mathbb{C}$ beschrieben?

3. Aufgabe

(4 Punkte)

Beweisen Sie: Die Gleichung $-\exp(x) = \tan(x)$ hat eine Lösung $x^* \in [-\frac{\pi}{4}, 0]$ und es gibt nur eine solche Lösung.

4. Aufgabe

(6 Punkte)

a) Untersuchen Sie folgende Reihen auf Konvergenz:

i)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\frac{1}{3^k}k^2}$$

i)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\frac{1}{3^k}k^2}$$
 ii) $\sum_{k=1}^{\infty} \frac{17 + \sin(k + 5\pi)}{k^2 + 3k + 1}$

b) Bestimmen Sie den Konvergenzradius R der Potenzreihe

$$\sum_{k=1}^{\infty} \frac{2^k (z+i)^k}{\cos\left(\frac{1}{k}\right)}$$

und skizzieren Sie den Konvergenzbereich in der komplexen Zahlenebene.