Technische Universität Berlin

Fakultät II – Institut für Mathematik Penn-Karras, Bärwolff, Förster, Tröltzsch $\begin{array}{c} \text{WS } 01/02 \\ 8. \text{ April } 2002 \end{array}$

April – Klausur (Rechenteil) Analysis I für Ingenieure

Name:							
Ich wünsche den Aushang des unter Angabe meiner Matr.—Nr am Schwarzen Brett und im WV	s Klausurgebnisses r. (ohne Namen)						
Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden.							
Dieser Teil der Klausur umfasst die Rechenaufgaben. Geben Sie immer den vollständigen Rechenweg an.							
Die Bearbeitungszeit beträgt eine Stunde.							
Die Gesamtklausur ist mit 32 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindestens 10 von 40 Punkten erreicht werden.							
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 10 Punkte

Berechnen Sie die Integrale a) $\int \ln(x^2) dx$, Wir lösen mittels partieller Integration:

$$\int \ln(x^2) \ dx = \int 1 \cdot \ln(x^2) \ dx = x \ln(x^2) - \int 2 \ dx = x \ln(x^2) - 2x = 2x(\ln|x| - 1)$$

b)
$$\int_0^1 \frac{\arctan(x)}{1+x^2} dx$$
.

Hier führt die Substitution $t = \arctan(x)$ zum Ziel:

$$\int_0^1 \frac{\arctan(x)}{1+x^2} dx = \int_0^{\frac{\pi}{4}} t dt = \left[\frac{t^2}{2}\right]_0^{\frac{\pi}{4}} = \frac{\pi^2}{32}$$

2. Aufgabe

5 Punkte

Stellen Sie die Funktion $f(x) = \frac{1}{1 + 8x^3}$ in Form einer Potenzreihe mit Entwicklungspunkt $x_0 = 0$ dar. Für welche $x \in \mathbb{R}$ ist diese Potenzreihe konvergent? Wir benutzen die Formel für die geometrische Reihe und erhalten

$$f(x) = \frac{1}{1 + 8x^3} = \frac{1}{1 - (-8x^3)} = \sum_{n=0}^{\infty} (-2)^{3n} x^{3n}$$

Diese ist konvergent für |q| < 1 also für $|-8x^3| < 1$. Somit erhalten wir Konvergenz für |x| < 1/2 oder $x \in]-1/2, 1/2[$.

3. Aufgabe

5 Punkte

Berechnen Sie den Grenzwert $\lim_{x\to 0}\frac{e^x-2+e^{-x}}{x^2}$. Wir benutzen die Regel von l' Hospital zweimal

$$\lim_{x \to 0} \frac{e^x - 2 + e^{-x}}{x^2} = \lim_{x \to 0} \frac{e^x - e^{-x}}{2x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{2} = 1$$

4. Aufgabe

5 Punkte

Berechnen Sie $\lim_{n\to\infty} (\sqrt{n^2+4n+1}-\sqrt{n^2+1})$. Zunächst erweitern wir

$$\sqrt{n^2 + 4n + 1} - \sqrt{n^2 + 1} = \frac{(\sqrt{n^2 + 4n + 1} - \sqrt{n^2 + 1})(\sqrt{n^2 + 4n + 1} + \sqrt{n^2 + 1})}{\sqrt{n^2 + 4n + 1} + \sqrt{n^2 + 1}}$$

$$= \frac{4n}{\sqrt{n^2 + 4n + 1} + \sqrt{n^2 + 1}}.$$

Nun können wir die höchste Potenz ausklammern

$$\lim_{n \to \infty} (\sqrt{n^2 + 4n + 1} - \sqrt{n^2 + 1}) = \lim_{n \to \infty} \frac{4n}{n\left(\sqrt{1 + \frac{4}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{1}{n^2}}\right)} = 2.$$

8 Punkte

5. Aufgabe

Untersuchen Sie die beiden folgenden Reihen auf Konvergenz:

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1}}{n^2}$$
,

Wir benutzen das Minorantenkriterium (Vergleichskriterium)

$$\frac{\sqrt{n^2+1}}{n^2} > \frac{\sqrt{n^2}}{n^2} = \frac{1}{n}.$$

Da die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, divergiert auch unsere Ausgangsreihe $\sum_{n=1}^{\infty} \frac{\sqrt{n^2+1}}{n^2}$.

b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{7}{\sqrt{n}+8}$$
.

Hier wenden wir das Leibnizkriteriums an. Der Ausdruck $(-1)^n \frac{7}{\sqrt{n+8}}$ alterniert. Außerdem ist $\frac{7}{\sqrt{n+8}}$ eine monotone Nullfolge: Der Nenner $\sqrt{n} + 8$ wächst mit wachsendem n, daher ist $\frac{7}{\sqrt{n+8}}$ monoton fallend. Somit konvergiert die Reihe aufgrund des Leibnizkriteriums.

6. Aufgabe 7 Punkte

Bestimmen Sie alle komplexen Lösungen der Gleichung $z^3=-27$ und stellen Sie diese in der Form x + iy dar.

Nach der Umwandlung in Polarkoordinaten $z^3 = 27(\cos(\pi) + i\sin(\pi))$ können wir die Formel von Moivre anwenden. Wir erhalten die Lösungen

$$z_0 = 3\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$$

$$z_1 = 3\left(\cos\left(\frac{3\pi}{3}\right) + i\sin\left(\frac{3\pi}{3}\right)\right)$$

$$z_0 = 3(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$$

$$z_1 = 3(\cos(\frac{3\pi}{3}) + i\sin(\frac{3\pi}{3}))$$

$$z_2 = 3(\cos(\frac{5\pi}{3}) + i\sin(\frac{5\pi}{3}))$$

Nach der Rückumwandlung erhalten wir die Lösungen $\frac{3}{2} + \frac{3\sqrt{3}}{2}i$, -3 und $\frac{3}{2} - \frac{3\sqrt{3}}{2}i$