TECHNISCHE UNIVERSITÄT BERLIN

SS 02

Stand: 6. August 2002

Fakultät II - Mathematik

Lutz, Gündel vom Hofe Körner, Leschke

Lösungen zur Klausur vom 22.7.2002 (Rechenteil) Analysis I für Ingenieure

1. Aufgabe (7 Punkte)

Welche $z \in \mathbb{C}$ erfüllen die folgende Ungleichung? Skizzieren Sie die Lösungsmenge!

$$\left| \frac{2iz+4}{(1+i)z} \right|^2 \le 2$$

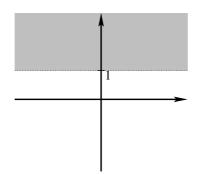
1. Lösungsweg:

$$\left| \frac{2iz+4}{(1+i)z} \right|^2 \quad \text{mit } z = x+iy \quad \left| \frac{2i(x+iy)+4}{(1+i)(x+iy)} \right|^2 = \left| \frac{-2y+4+2ix}{(x-y)+i(x+y)} \right|^2$$

$$= \quad \frac{(-2y+4)^2 + (2x)^2}{(x-y)^2 + (x+y)^2} = \frac{4y^2 - 16y + 16 + 4x^2}{2x^2 + 2y^2} \le 2$$

$$\Leftrightarrow \quad -16y+16 \le 0 \Leftrightarrow y \ge 1.$$

Skizze:



2. Lösungsweg:

$$\begin{split} \left| \frac{2iz+4}{(1+i)z} \right|^2 &= \frac{(2iz+4)(-2i\bar{z}+4)}{(1+i)z(1-i)\bar{z}} = \frac{4|z|^2 + 8i(z-\bar{z}) + 16}{2|z|^2} \\ &= \frac{4|z|^2 - 16\operatorname{Im}z + 16}{2|z|^2} \le 2 \\ \Leftrightarrow &-16\operatorname{Im}z + 16 \le 0 \Leftrightarrow \operatorname{Im}z \ge 1. \end{split}$$

2. Aufgabe (8 Punkte)

i) Die Reihe $\sum_{k=1}^{\infty} (-1)^k \frac{2}{3k+4}$ konvergiert nach dem Leibnitzkriterium:

die Reihe ist alternierend, und $\frac{2}{3k+4}$ ist eine

monoton fallende Nullfolge.

ii) Die Reihe $\sum_{n=0}^{\infty} \frac{n^3+1}{3^n}$ konvergiert nach dem Quotientenkriterium :

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{(n+1)^3 + 1}{3^{n+1}} \cdot \frac{3^n}{n^3 + 1} \right|$$

$$= \lim_{k \to \infty} \frac{(n+1)^3 + 1}{n^3 + 1} \cdot \frac{1}{3}$$

$$= \frac{1}{3}$$

$$< 1.$$

3. Aufgabe (10 Punkte)

i) $\int_{1}^{2} 3(x^{2} + 1) \ln x \, dx = \left[(x^{3} + 3x) \ln x \right]_{1}^{2} - \int_{1}^{2} (x^{3} + 3x) \, \frac{1}{x} \, dx$ $= \left[(x^{3} + 3x) \ln x \right]_{1}^{2} - \int_{1}^{2} (x^{2} + 3) \, dx$ $= 14 \ln 2 - \left[\frac{x^{3}}{3} + 3x \right]_{1}^{2} = 14 \ln 2 - \frac{16}{3}$

ii) 1. Lösung

$$\int_{0}^{2} (3 + x \sin x^{2}) dx = \int_{0}^{4} \frac{1}{2} (\frac{3}{\sqrt{t}} + \sin t) dt$$
Subtitution $t = x^{2}$, $dt = 2x dx$, $x = \sqrt{t}$,

Grenzen: $0 - 4$

$$= \left[3\sqrt{t} - \frac{1}{2} \cos t \right]_{0}^{4}$$

$$= 6 + \frac{1}{2} - \frac{1}{2} \cos 4 = \frac{13}{2} - \frac{1}{2} \cos 4$$

2. Lösung

$$\int_{0}^{2} (3 + x \sin x^{2}) dx = \int_{0}^{2} 3dx + \int_{0}^{2} x \sin x^{2} dx$$

$$= \left[3x\right]_{0}^{2} + \int_{0}^{4} \frac{1}{2} \sin t dt$$
Subtitution $t = x^{2}$, $dt = 2x dx$,
Grenzen: $0 - 4$

$$= 6 - \left[\frac{1}{2} \cos t\right]_{0}^{4}$$

$$= 6 + \frac{1}{2} - \frac{1}{2} \cos 4 = \frac{13}{2} - \frac{1}{2} \cos 4$$

4. Aufgabe (7 Punkte)

Die Differentialgleichung ist $y'(x) = x \tan(y(x))$, $y(1) = \frac{\pi}{4}$. Bestimmen Sie das Taylorpolynom 2. Grades der Lösung y(x) im Entwicklungspunkt $x_0 = 1$. Die zweite Ableitung von y erfüllt die Differentialgleichung:

$$y''(x) = \tan(y(x)) + x(1 + \tan^2(y(x)))y'(x),$$

oder

$$y''(x) = \tan(y(x)) + x \frac{y'(x)}{\cos^2(y(x))},$$

damit

$$y(1) = \frac{\pi}{4}, \ y'(1) = 1, \ y''(1) = 1 + 2(1+1^2)1 = 3,$$

(falls $\tan\frac{\pi}{4}=1$ bzw $\cos\frac{\pi}{4}=\frac{\sqrt{2}}{2}$ fehlt, dann hier)

und

$$T_{y,1}^2(x) = \frac{\pi}{4} + x - 1 + \frac{3(x-1)}{2}.$$

(falls in der Formel der Entwicklungspunkt $x_0=1$ fehlt, gibt es hier nur noch)

5. Aufgabe (8 Punkte)

Grenzwerte:

i)
$$\lim_{n \to \infty} \frac{5n^7 + 6n + 3}{3n^7 + 17n^2 + 1} = \lim_{n \to \infty} \frac{5 + \frac{6}{n^6} + \frac{3}{n^7}}{3 + \frac{17}{n^7} + \frac{1}{n^7}} = \frac{5}{3}$$
.

ii) Da $\lim_{x\to 0} 1-\cos(\frac{x}{2})=\lim_{x\to 0} 1-\cos x=0$ und $\lim_{x\to 0} \frac{1}{2}\sin(\frac{x}{2})=\lim_{x\to 0} \sin x=0$ erhält man

$$\lim_{x \to 0} \frac{1 - \cos(\frac{x}{2})}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{1}{2}\sin(\frac{x}{2})}{\sin x} = \lim_{x \to 0} \frac{\frac{1}{4}\cos(\frac{x}{2})}{\cos x} = \frac{1}{4}.$$

(wird L'Hospital nicht erwähnt: ; wird " $\frac{0}{0}$ " nicht erwähnt:)