Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grigorieff

SS 04 19.07.04

Juli – Klausur (Verständnisteil) Analysis I für Ingenieure

Name:							
MatrNr.:	••••	Studi	engang	:			
Neben einem handbeschriebener zugelassen.	n A4]	Blatt r	nit No	tizen s	sind ke	ine Hil	fsmittel
Die Lösungen sind in Reinschr schriebene Klausuren können ni				_	eben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst e Rechenaufwand mit den Kenntn wenn nichts anderes gesagt ist, i	issen a	aus der	Vorles	sung lö	sbar se	ein. Gel	_
Die Bearbeitungszeit beträgt ein	ne Stu	nde.					
Die Gesamtklausur ist mit 32 v beiden Teile der Klausur mindes					*	•	
Korrektur							
	1	2	3	4	5	6	Σ
L					L	L	

1. Aufgabe 8 Punkte

Skizzieren Sie die folgenden Mengen.

(a)
$$M_a = \{(x, y) \in \mathbb{R}^2 | y \ge (x - 1)^2 \text{ und } y^2 + (x - 1)^2 < 1\}$$

(b)
$$M_b = \{z \in \mathbb{C} | \operatorname{Re}(z) = |z| \}$$

(c)
$$M_c = \{ z \in \mathbb{C} | |z - e^{i\frac{\pi}{4}}| \ge 2 \}$$

2. Aufgabe 7 Punkte

Untersuchen Sie die Folgen auf Konvergenz, unbestimmte Divergenz bzw. bestimmte Divergenz gegen $+\infty$ oder $-\infty$. Bei konvergenten Folgen ist der Grenzwert zu bestimmen.

(a)
$$(a_n)_{n\in\mathbb{N}}$$
 mit $a_n = \frac{n^2}{n^2+1}\cos(n\pi)$

(b)
$$(b_n)_{n\in\mathbb{N}}$$
 mit $b_n = (1 + \frac{2}{n+2})^{n+5}$

(c)
$$(c_n)_{n\in\mathbb{N}}$$
 mit $c_n = \frac{1}{(\sqrt[n]{n})-1}$, für $n \ge 2$

3. Aufgabe 7 Punkte

Sei $\alpha \in \mathbb{R}$ eine Zahl und die Funktion $f : \mathbb{R} \to \mathbb{R}$ gegeben als

$$f(x) = \begin{cases} \cosh(x) & \text{für } x \le 0 \\ \alpha \cos^2(x) & \text{für } x > 0 \end{cases}.$$

- (a) Für welchen Wert des Parameters α ist f eine auf ganz \mathbb{R} stetige Funktion?
- (b) Kann die Funktion f für jedes $\alpha \in \mathbb{R}$ differenzierbar sein? Begründen Sie Ihre Antwort.

4. Aufgabe 4 Punkte

Sei $f\colon\mathbb{R}\to\mathbb{R}$ eine differenzierbare Funktion. Zeigen Sie, dass es ein $x\in(-\frac{\pi}{2},\frac{\pi}{2})$ gibt mit

$$f(x)\sin(x) = f'(x)\cos(x).$$

(Hinweis: Betrachten Sie die Funktion $g(x) = f(x)\cos(x)$.)

5. Aufgabe 6 Punkte

Sei $f:\mathbb{R}\to\mathbb{R}$ eine stetige Funktion mit Stammfunktion F. Berechnen Sie alle Stammfunktionen von

$$f(5x+3) + xf(x^2).$$

6. Aufgabe 8 Punkte

Sei die Funktion f gegeben als

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \frac{x^2}{x^2 + 1}.$$

- (a) Zeigen Sie, dass f eine gerade Funktion ist.
- (b) Zeigen Sie, dass die Funktion f auf dem Intervall $[0, \infty[$ monoton ist.
- (c) Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind.

	Richtig	Falsch
Die Funktion f besitzt auf $[0, \infty[$ ein globales Minimum.		
Die Funktion f besitzt auf $[0, \infty[$ ein globales Maximum.		

(Für jedes an der richtigen Stelle gesetzte Kreuz erhalten Sie einen Punkt. Für ein an der falschen Stelle gesetztes Kreuz wird ein Punkt abgezogen. Minimale Punktzahl des Aufgabenteils c) sind 0 Punkte.)

- (d) Skizzieren Sie den Graphen der Funktion f auf \mathbb{R} .
- (e) Zeigen Sie die Gültigkeit der folgenden Abschätzung.

$$\int_0^1 \frac{x^2}{x^2 + 1} dx \le \frac{1}{2}$$

(f) Der Wert des Integrals ist $\int_0^1 \frac{x^2}{1+x^2} dx = \frac{1}{4}(4-\pi)$. Geben Sie den Wert von $\int_{-1}^1 \frac{x^2}{1+x^2} dx$ an.