Dozenten: Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Assistenten: K. Bauer, C. Schultz

Musterlösung Juli-Vollklausur Verständnisteil SS 2005 Analysis I für Ingenieure

1. Aufgabe (8 Punkte)

Die drei Teilfunktionen sind für sich genommen stetig. Betrachte nun die kritischen Stellen $x=\pm 2$: $\lim_{x \nearrow -2} f(x) = \lim_{x \nearrow -2} (x+2) \sin(x) = 0, \ \lim_{x \searrow -2} f(x) = f(-2) = -2a + b \Rightarrow 2a = b.$ $\lim_{x \searrow 2} f(x) = \lim_{x \searrow 2} 2^x = 2^2 = 4$, $\lim_{x \nearrow 2} f(x) = f(2)2a + b = 2b \Rightarrow b = 2 \Rightarrow a = 1$. Die Funktion ist also für a = 1, b = 2 stetig.

2. Aufgabe (8 Punkte)

- a) Sei $z = re^{i\varphi}$ in Polarkoordinaten gegeben. Dann gilt: $z^6 = 1 \Leftrightarrow r^6e^{6\varphi i} = e^{2k\pi i} \Rightarrow r = 1, \ \phi = \frac{k\pi}{3}$. Die Nullstellen des Polynoms sind also $z_k = e^{\frac{k\pi i}{3}}, \ k \in \{0, \dots, 5\}.$
- b) Es gilt: $(z-1)p(z) = (z-1)(z^5 + z^4 + z^3 + z^2 + z + 1) = z^6 z^5 + z^5 z^4 + z^4 z^3 + z^3 z^2 + z^2 z + z 1 = z^6 z^5 + z^5 z^4 + z^4 z^3 + z^3 z^2 + z^4 z$ z^6-1 . Nun gilt: $(z-1)p(z)=z^6-1=0 \Leftrightarrow z=1$ oder p(z)=0. Demnach sind die Nullstellen von p(z) unter den Nullstellen von z^6-1 zu suchen. Da jedoch $p(z_0)=p(1)=6\neq 0$ und $z_k-1\neq 0$ für alle $k \in 1, ..., 5$ hat p(z) die Nullstellen $z_k, k \in \{1, ..., 5\}$.

3. Aufgabe (8 Punkte)

- a) falsch! Sei z.B. f(x) = x. Dann ist f nicht die Nullfunktion, aber trotzdem gilt $\int_{-a}^{a} x dx = 0$.
- b) falsch! Sei z.B. $a = \pi$ und $f(x) = \cos(x)$. Dann ist f nicht ungerade, aber $\int_{-\pi}^{\pi} \cos(x) dx = 0$.
- c) falsch! Sei z.B. f(x) = x. Dann gilt: $\int_{-a}^{a} x dx = 0$, aber $\int_{-a}^{a} x^{2} dx \neq 0$.
- d) wahr! Angenommen, $f(x) \neq 0$ für alle $x \in [-a, a]$. Da f stetig ist, folgt aus dem Zwischenwertsatz, dass (ohne Beschränkung der Allgemeinheit) f(x) > 0 für alle $x \in [-a, a]$. Nun folgt wiederum aus der Stetigkeit von f und aus der Kompaktheit von [-a, a], dass das Mininum c angenommen wird, sagen wir in \tilde{x} , d.h. $f(\tilde{x}) = c > 0$. Dann gilt aber $\int_{-a}^{a} f(x) dx \ge \int_{-a}^{a} c dx = 2ac > 0$. Dies steht aber im Widerspruch zu $\int_{-a}^{a} f(x)dx = 0$. Damit ist die Annahme falsch und es gibt tatsächlich eine Zwischenstelle $x_0 \in [-a, a]$ mit $f(x_0) = 0$.

4. Aufgabe (8 Punkte)

Sei $g(x) = \cos^2(x) f(x)$. Dann gilt $g(-\frac{\pi}{2}) = g(\frac{\pi}{2}) = 0$. Aus dem Mittelwertsatz folgt somit, dass es ein $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ gibt mit $0 = g'(x) = \cos^2 f'(x) - 2\cos(x)\sin(x)f(x) \Leftrightarrow \cos^2 f'(x) = 2\cos(x)\sin(x)f(x)$.

5. Aufgabe (8 Punkte)

- a) Es gilt: f ist zweimal differenzierbar, f'' = -f, also ist auch f'' zweimal differenzierbar, etc. Also ist f beliebig oft differenzierbar.
- b) Es gilt: f(0) = 0, f'(0) = 1, f''(0) = -f(0) = 0, f'''(0) = (f'')'(0) = -f'(0) = -1, etc. Also bekommen wir: $f^k(0) = \begin{cases} 0 & \text{, falls } k = 4n \\ 1 & \text{, falls } k = 4n + 1 \\ 0 & \text{, falls } k = 4n + 2 \\ -1 & \text{, falls } k = 4n + 3 \end{cases}$

Die Taylorreihe lautet demnach

 $T(f,0)(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{n=0}^{\infty} (\frac{1}{(4n+1)!} x^{4n+1} - \frac{1}{(4n+3)!} x^{4n+3}) = \sum_{l=0}^{\infty} \frac{(-1)^l}{(2l+1)!} x^{2l+1}$