Technische Universität Berlin

Fakultät II – Institut für Mathematik

 $\mbox{Doz.:}$ Gündel-vom Hofe, Mehl, Penn-Karras, Schneider Ass.: Altmann, Tölle

WS 11/12 20. Feb 2012

Februar – Klausur Analysis I für Ingenieure

Name:		Vorname:				
MatrNr.:		Studiengang:				
Neben einem handbeschriebenen A lassen. Die Lösungen sind in Reins bitte ein neues Blatt verwender ben. Mit Bleistift oder Rotstift gese geben Sie im Zweifelsfalle auch Ihre	schrift a n. Auf jed chriebene	uf A4 Blättern abz es Blatt bitte Nam Klausuren können	zugeben e und M nicht g	. Für j atrikelr gewertet	ede Anummer werde	ufgabe : schrei- n. Bitte
Geben Sie im Rechenteil immer de wenn nichts anderes gesagt ist, im Insbesondere soll immer klar wurden! Ohne Begründung bzw. I Die Bearbeitungszeit beträgt 90 M	mer eine werden, Rechenwe	kurze, aber vol welche Sätze o	lständi der Tl	ge Beg	gründu	ing an.
Die Gesamtklausur ist mit 30 Punkt mindestens 10 Punkte erreicht werd		,	n der be	iden Te	ile der l	Klausur
Korrektur						
			1	2	3	Σ
			4	5	6	Σ

Rechenteil

1. Aufgabe 11 Punkte

- (a) (3P) Für welche **reellen** Zahlen x gilt $\frac{|2x-3|}{x} \le 4$?
 - * Die Ungleichung ist für x = 0 nicht definiert. Falls x < 0, gilt

$$\frac{|2x-3|}{x} = -\frac{|2x-3|}{|x|} \le 0 \le 4,$$

die Ungleichung ist also erfüllt.

* Falls x > 0, formt man um $|2x - 3| \le 4x$.

Fallunterscheidung:

Fall 1:
$$2x - 3 \ge 0 \iff x \ge \frac{3}{2}$$

 $\implies 2x - 3 \le 4x$.
Fall 2: $2x - 3 < 0 \iff x < \frac{3}{2}$.
 $\implies -(2x - 3) \le 4x$.

* Falls $x \ge \frac32$, ist die Ungleichung $x \ge -\frac32$ erfüllt. Falls $0 < x < \frac32$, lautet die Ungleichung $x \ge \frac12$. Die Lösungsmenge beträgt also

$$\mathbb{L} = \]-\infty, 0[\ \cup \ [\frac{1}{2}, \frac{3}{2}[\ \cup \ [\frac{3}{2}, \infty[\ = \]-\infty, 0[\ \cup \ [\frac{1}{2}, \infty[.$$

(b) (2P) Berechnen Sie alle **reellen** Lösungen x der Gleichung: $\ln(\sqrt[3]{x^4}) = \ln x^{1/3} - 9$.

$$\ln\left(\sqrt[3]{x^4}\right) = \ln x^{1/3} - 9$$

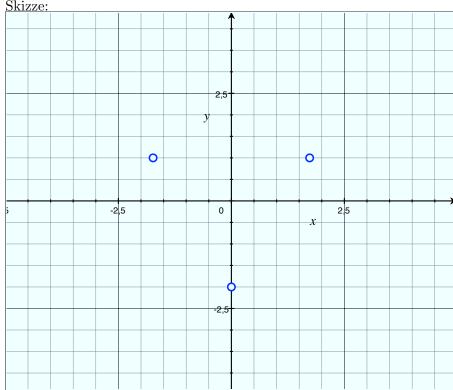
$$\iff \frac{4}{3}\ln(x) = \frac{1}{3}\ln(x) - 9$$

$$\iff \ln(x) = -9$$

$$\iff x = e^{-9}.$$

- (c) (4P) Berechnen und skizzieren Sie alle **komplexen** Lösungen z der Gleichung: $z^3=8i$ in der Form z = a + bi.
 - * Umrechnung von 8i und Ansatz $z^3 = 8i = 8e^{\frac{\pi}{2}i}$
 - * Rechnung $z_k = \sqrt[3]{8}e^{i(\frac{\pi}{6} + \frac{2\pi k}{3})} = 2e^{i\phi_k}, \ k = 0, 1, 2$ wobei $\phi_0 = \frac{\pi}{6}, \ \phi_1 = \frac{5}{6}\pi, \ \phi_2 = \frac{3}{2}\pi$

* Skizze:



* Umrechnung in kartesische Koord.

$$2e^{i\frac{\pi}{6}} = 2\cos(\frac{\pi}{6}) + 2i\sin(\frac{\pi}{6}) = \sqrt{3} + i.$$

$$2e^{i\frac{5\pi}{6}} = 2\cos(\frac{5\pi}{6}) + 2i\sin(\frac{5\pi}{6}) = -\sqrt{3} + i.$$

$$2e^{i\frac{3\pi}{2}} = 2\cos(\frac{3\pi}{2}) + 2i\sin(\frac{3\pi}{2}) = -2i.$$

$$2e^{i\frac{3\pi}{2}} = 2\cos(\frac{3\pi}{2}) + 2i\sin(\frac{3\pi}{2}) = -2i.$$

- (d) (2P) Berechnen Sie alle **komplexen** Zahlen z, für die gilt: Re(z + 27i) = 2iz + 3.
 - * Ansatz: z = a + bi, $a, b \in \mathbb{R}$.

$$Re(a + bi + 27i) = 2i(a + bi) + 3$$

$$\iff \operatorname{Re}(a+i(b+27)) = (3-2b) + 2ai$$

$$\iff a = (3 - 2b) + 2ai$$

* Genau dann Null, wenn Real- und Imaginärteil beide Null sind.

$$\iff a = 0 \text{ und } b = \frac{3}{2}$$

$$\Longrightarrow \mathbb{L} = \left\{ \frac{3}{2}i \right\}.$$

2. Aufgabe

10 Punkte

Berechnen Sie folgende Integrale

(a)
$$\int_0^{\pi/2} \cos(\sin(x))\cos(x) dx$$
 (b) $\int \frac{1}{x^2(x+1)} dx$ (c) $\int_0^\infty te^{-t} dt$

Hinweis: $\sin(1)$ muss nicht weiter berechnet oder gerundet werden.

a) (3P) Ansatz: Substitution $\sin x = t$. (Oder auch O.K.: Form f(g)g' erkennen).

$$\frac{dt}{dx} = \frac{d(\sin(x))}{dx} = \cos(x)$$

 $\implies dx = \frac{1}{\cos(x)} dt$. Also gilt

$$\int_0^{\pi/2} \cos(\sin(x))\cos(x) \, dx = \int_0^1 \cos(t) \frac{\cos(x)}{\cos(x)} \, dt = \int_0^1 \cos(t) \, dt$$
$$= \sin(t) \Big|_0^1 = \sin(\sin(x)) \Big|_0^{\pi/2} = \sin(1) - \sin(0) = \sin(1).$$

b) (3P) Partialbruchzerlegung des Integranden mit doppelter Nullstelle bei x=0. Ansatz:

$$\frac{1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}.$$

Erhalten durch Koeffizientenvergleich $A=-1,\,B=1,\,C=1$ d.h.

$$\frac{1}{x^2(x+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x+1}.$$

$$\int \frac{1}{x^2(x+1)} dx = -\int \frac{1}{x} dx + \int \frac{1}{x^2} dx + \int \frac{1}{x+1} dx$$

$$= -\ln|x| - \frac{1}{x} + \ln|x+1| + C,$$

wobei $C \in \mathbb{R}$ eine beliebige Konstante ist.

c) (4P) Es handelt sich um ein uneigentliches Integral. Partielle Integration liefert

$$\int_{0}^{\infty} te^{-t} dt = \lim_{b \to \infty} \int_{0}^{b} te^{-t} dt = \lim_{b \to \infty} \left((-te^{-t}) \Big|_{0}^{b} - \int_{0}^{b} (-e^{-t}) dt \right)$$

$$= \lim_{b \to \infty} \left(-te^{-t} - e^{-t} \Big|_{0}^{b} \right) = \lim_{b \to \infty} \left(-be^{-b} - e^{-b} - (-1) \right)$$

$$= 1 - \lim_{b \to \infty} \left(\frac{b+1}{e^{b}} \right) = 1 - \lim_{b \to \infty} \left(\frac{1}{e^{b}} \right) = 1.$$

3. Aufgabe

10 Punkte

Es sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = 1 + \cos(2x)$.

(a) (3P) Bestimmen Sie das Taylorpolynom vom Grad 2 von f an der Stelle $x_0 = \pi/4$.

*

$$f'(x) = -2\sin(2x).$$

$$f''(x) = -4\cos(2x).$$

* Taylorpolynom in $x_0 = \pi/4$:

$$T_2(x) = 1 - 2\left(x - \frac{\pi}{4}\right) + 0 = -2x + 1 + \frac{\pi}{2}$$

(b) (3P) Bestimmen Sie das dazugehörige Restglied.

*

$$f'''(x) = 8\sin(2x)$$

* Restglied:

$$R_2(x) = \frac{4}{3}\sin(2\xi)\left(x - \frac{\pi}{4}\right)^3,$$

- * ..., wobei ξ zwischen x und $\pi/4$ liegt.
- (c) (4P) Berechnen Sie den Grenzwert

$$\lim_{x \to \pi/2} \frac{f(x)}{(x - \pi/2)^2}.$$

$$\lim_{x \to \pi/2} \frac{1 + \cos(2x)}{(x - \pi/2)^2} \underset{\text{L'H}}{=} \lim_{x \to \pi/2} \frac{-2\sin(2x)}{2(x - \pi/2)} \underset{\text{L'H}}{=} \lim_{x \to \pi/2} \frac{-4\cos(2x)}{2} = -2\cos(\pi) = 2.$$

Verständnisteil

4. Aufgabe 10 Punkte

Seien $a, b \in \mathbb{R}$, a > 0 und die Funktion f gegeben durch

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \begin{cases} e^{ax}, & x \ge 0\\ x^3 + a^2x + b, & x < 0 \end{cases}$$

- (a) (2P) Bestimmen Sie die Umkehrfunktion von f für x > 0.
 - * $f^{-1}(x) = \frac{1}{a} \ln(x)$, denn ...
 - * $f(f^{-1}(x)) = \exp(a\frac{1}{a}\ln x) = x$ bzw. $f^{-1}(f(x)) = \frac{1}{a}\ln(e^{ax}) = \ln(e^x) = x$
- (b) (4P) Für welche Parameter a, b ist die Funktion f auf dem gesamten Definitionsbereich stetig?
 - * Da Polynom und e-Fkt stetig, ist f stetig für alle $x \neq 0$
 - * linksseitiger Grenzwert $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^3 + a^2x + b = b$
 - * rechtsseitiger Grenzwert $\lim_{x \searrow 0} f(x) = \lim_{x \to 0} e^{ax} = 1$
 - * f stetig in 0, wenn Grenzwerte übereinstimmen und gleich Funktionswert, also b = 1 (a beliebig)
- (c) (4P) Für welche Parameter a, b ist die Funktion f sogar differenzierbar?
 - (a) Da Polynom und e-Fkt differenzierbar, ist f diff. für alle $x \neq 0$
 - (b) Grenzwert Differenzenquotient von links (b = 1 notwendig)

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^3 + a^2x + b - 1}{x} = \lim_{x \to 0} x^2 + a^2 = a^2$$

(c) Grenzwert Differenzenquotient von rechts (L'Hospital)

$$\lim_{x \searrow 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \nearrow 0} \frac{e^{ax} - 1}{x} = \lim_{x \nearrow 0} \frac{ae^{ax}}{1} = a$$

(d) f differenzierbar, wenn b=1 und Grenzwerte übereinstimmen, also $a=a^2$.

Ergebnis (da a > 0 vorausgesetzt): a = 1, b = 1

5. Aufgabe 11 Punkte

(a) (3P) Gegeben sei die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \sin(1/x)$ und die Folge $a_n = \frac{1}{n\pi}$. Berechnen Sie $\lim_{n\to\infty} f(a_n)$ und $\lim_{n\to\infty} f(-a_n)$. Folgt daraus, dass f stetig fortsetzbar an der Stelle x=0 ist?

- * $\lim_{n\to\infty} f(\pm a_n) = \lim_{n\to\infty} \sin(\pm n\pi) = \lim_{n\to\infty} 0 = 0$
- * Nein, es folgt nicht, dass f stetig fortsetzbar ist, denn...
- * ... es müsste für alle Folgen (a_n) mit $\lim_{n\to\infty} a_n = 0$ gelten, dass $\lim_{n\to\infty} f(a_n) = 0$.
- (b) (2P) Seien (a_n) , (b_n) Folgen mit $\lim_{n\to\infty} a_n = \infty$ und $\lim_{n\to\infty} b_n = -\infty$. Gilt dann immer $\lim_{n\to\infty} \frac{a_n}{b_n} = -1$? (Beweis oder Gegenbeispiel)
 - * Angabe eines Gegenbeispiels, z.B. $a_n = n$, $b_n = -n^2$
 - * Berechnung des Grenzwertes, z.B. $\lim_{n\to\infty}\frac{a_n}{b_n}=0\neq -1$
- (c) Berechnung von Grenzwerten (i) (3P)
 - * Umformung

$$\lim_{n \to \infty} \frac{3 - 7n^2 + e^{-2n}}{8n^2 - n + 1} = \lim_{n \to \infty} \frac{3/n^2 - 7 + e^{-2n}/n^2}{8 - 1/n + 1/n^2}$$

- * Bemerkung zu Einzelgrenzwerten, u.a. $\lim_{n\to\infty}\frac{e^{-2n}}{n^2}=0$
- * Ergebnis = -7/8
- (c) Berechnung von Grenzwerten (ii) (3P)
 - * Einzelgrenzwerte $\lim_{x\to\infty} \frac{\sin(-x)}{x} = 0$, $\lim_{x\to\infty} \frac{\cos(x)}{x} = 0$, da Zähler beschränkt.
 - * Umformung (nicht L'Hospital!)

$$\lim_{x \to \infty} \frac{2x + \sin(-x)}{x + \cos(x)} = \lim_{x \to \infty} \frac{2 + \frac{\sin(-x)}{x}}{1 + \frac{\cos(x)}{x}}$$

* Ergebnis = 2

6. Aufgabe 10 Punkte

(a) (5P) Sei $f: \mathbb{R} \to \mathbb{R}$ eine stetige Funktion mit $\int_2^7 f(x) \ dx = 0$. Zeigen Sie, dass f eine Nullstelle im Intervall [0, 10] besitzt.

- * Da f stetig ist, ist der Mittelwertsatz der Integralrechnung anwendbar
- * Es existiert also ein $\xi\in]2,7[\dots$
- * ... mit $f(\xi) = \frac{1}{5} \int_2^7 f(x) \ dx = 0 \cdot \frac{1}{5} = 0$.
- * f besitzt demnach eine Nullstelle im Intervall [2,7[.
- *]2,7[< [0,10] und daher hat f eine Nullstelle im Intervall [0,10]
- (b) (5P) Sei p die Funktion $p(x) := x^6 5x^2 + 3$. Zeigen Sie, dass p eine Nullstelle im Intervall [-1,1] besitzt.
 - * Polynom p ist stetig
 - * Berechnung positiver/negativer Funktionswerte z.B. p(-1) = p(1) = -1, p(0) = 3
 - * Der Zwischenwertsatz ist anwendbar: Es existiert also ein $x \in [-1,0]$ oder [0,1] mit p(x)=0.
 - * p besitzt also eine Nullstelle in [-1, 1].