Institut für Mathematik Wintersemester 2017/18

Gabriele Penn-Karras, Sebastian Riedel Rosa Preiß, Martin Slowik, Lukas Wessels

Vorname:

Modulprüfung "Analysis I für Ingenieurwissenschaften" Datum: 13. April 2018

MatrNr.:	Studiengang:
mittel zugelassen. Die Lösungen sind in Reinsch	A4-Blatt mit Notizen sind keine weiteren Hilfs- arift auf A4 Blättern abzugeben. Für jede Aufga- latt bitte Name und Matrikelnummer schreiben. aren können nicht gewertet werden.
	und, wenn nichts anderes gesagt, eine kurze, aber ründung bzw. Rechenweg gibt es keine
Die Bearbeitungszeit beträgt 90 Minuten. Es s	ind maximal 60 Punkte erreichbar.
Die Klausur ist mit 30 Punkten bestanden.	

Hiermit erkläre ich, dass

- mir die für diese Prüfung relevanten Zulassungsvoraussetzungen aus der StuPO bekannt sind. Mir ist außerdem bewusst, dass ihre Nichterfüllung zur Ungültigkeit der Prüfung führen kann. (§ 39 Abs. 2 Satz 4 AllgStuPO)
- mir bekannt ist, dass die Teilnahme an der Prüfung eine ordnungsgemäße Anmeldung voraussetzt, andernfalls die Prüfung nicht gültig ist. (§ 39 Abs. 2 AllgStuPO)
- mir bekannt ist, dass eine Prüfung, die unter bekannten und bewusst in Kauf genommenen gesundheitlichen Beeinträchtigungen abgelegt wird, grundsätzlich Gültigkeit hat.

Korrektur

1	2	3	4	5	6	Σ

1. Aufgabe (9 Punkte)

(a) Untersuchen Sie die folgende Funktion $f: \mathbb{R} \to \mathbb{R}$ im Punkt $x_0 = 0$ auf Differenzierbarkeit

$$f(x) := |x|\sin(x)$$

(b) Sei $g:(0,1]\to\mathbb{R}$ gegeben durch $g(x):=x\ln(x)$. Bestimmen Sie alle lokalen und globalen Extremstellen von g.

Lösung:

(a) [3 Punkte] Wir berechnen zunächst den rechtsseitigen Differenzenquotienten im Punkt $x_0 = 0$:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{|h|\sin(h) - |0|\sin(0)}{h} = \lim_{h \to 0} \sin(h) = 0.$$

Als nächstes berechnen wir den linksseitigen Differenzenquotienten im Punkt $x_0 = 0$:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{|h| \sin(h) - |0| \sin(0)}{h} = \lim_{h \to 0} \left(-\sin(h) \right) = 0.$$

Da der linksseitige und der rechtsseitige Differenzenquotient existieren und übereinstimmen, ist f im Punkt $x_0 = 0$ differenzierbar.

(b) [6 Punkte] Zunächst berechnen wir die ersten beiden Ableitungen von g:

$$g'(x) = \ln(x) + 1,$$
 $g''(x) = \frac{1}{x}.$

Das notwendige Kriterium g'(x) = 0 liefert a = 1/e als einzige Kandidatin für eine Extremstelle im Inneren des Intervalls. Da g''(1/e) = e > 0, handelt es sich bei a = 1/e um eine lokale Minimalstelle.

Da es keine weitere Extremstelle im Inneren des Intervalls gibt, ist a=1/e sogar eine globale Minimalstelle und b=1 zumindest eine lokale Maximalstelle. Da gilt $g(b)=\ln(1)=0$ und

$$\lim_{x \searrow 0} g(x) = \lim_{x \searrow 0} x \ln(x) = \lim_{x \searrow 0} \frac{\ln(x)}{\frac{1}{x}} \stackrel{\text{l'H}}{=} \lim_{x \searrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \searrow 0} -x = 0,$$

folgt, dass es sich bei b=1 um eine globale Maximalstelle handelt. Wir durften hier die Regel von l'Hospital anwenden, da $\lim_{x\searrow 0}\frac{1}{x}=\pm\infty=\lim_{x\searrow 0}(\ln(x))$.

2. Aufgabe (10 Punkte)

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ gegeben durch $f(x) = \sin(\pi x + \pi/2)$.
 - (i) Berechnen Sie die erste und die zweite Ableitung von f.
 - (ii) Geben Sie das Taylorpolynom zweiter Ordnung im Entwicklungspunkt $x_0 = 0$ an. Vereinfachen Sie den Ausdruck so weit wie möglich.
 - (iii) Sei $g: \mathbb{R} \to \mathbb{R}$ gegeben durch

$$g(x) := x^2 + x^3 + \sin(\pi x + \pi/2).$$

Geben Sie das Taylorpolynom zweiter Ordnung von g im Entwicklungspunkt $x_0 = 0$ an.

(b) Sei $h: \mathbb{R} \to \mathbb{R}$ eine Funktion, deren Fourierpolynom zweiten Grades in komplexer Darstellung gegeben ist durch

$$\Phi_2^h(t) = \frac{3}{2}e^{-2it} + 3ie^{-it} + 1 - 3ie^{it} + \frac{3}{2}e^{2it}.$$

(i) Bestimmen Sie die Koeffizienten $a_0, a_1, a_2, b_1, b_2 \in \mathbb{R}$ der reellen Darstellung

$$\Phi_2^h(t) = \frac{a_0}{2} + \sum_{k=1}^2 a_k \cos(kt) + b_k \sin(kt).$$

(ii) Ist h eine gerade Funktion? Begründen Sie Ihre Antwort!

Lösung:

a) (i) [2 Punkte] Es ergibt sich

$$f'(x) = \pi \cos(\pi x + \pi/2),$$
 $f''(x) = -\pi^2 \sin(\pi x + \pi/2).$

(ii) [1 Punkt] Es gilt

$$T_2 f(x) = \sin(\pi/2) + \pi \cos(\pi/2)x + \frac{-\pi^2 \sin(\pi/2)}{2}x^2 = 1 - \frac{\pi^2}{2}x^2.$$

(iii) [1 Punkt] Es gilt

$$T_2g(x) = 1 - \frac{\pi^2}{2}x^2 + x^2.$$

b) (i) [4 Punkte] Mit der Identität $\exp(ix) = \cos(x) + i\sin(x)$ und unter Verwendung der Tatsache, dass $\cos(x) = \cos(-x)$ und $\sin(x) = -\sin(-x)$ ergibt sich

$$\frac{3}{2}e^{-2it} + 3ie^{-it} + 1 - 3ie^{it} + \frac{3}{2}e^{2it}$$

$$= \frac{3}{2}(\cos(-2t) + i\sin(-2t)) + 3i(\cos(-t) + i\sin(-t)) + 1$$

$$- 3i(\cos(t) + i\sin(t)) + \frac{3}{2}(\cos(2t) + i\sin(2t))$$

$$= 3\cos(2t) + 1 + 6\sin(t).$$

Daher ergibt sich $a_0 = 2$, $a_1 = 0$, $a_2 = 3$, $b_1 = 6$ und $b_2 = 0$.

(ii) [1 Punkt] Da nicht alle Koeffizienten b_k , $k \geq 1$, gleich Null sind, ist h keine gerade Funktion.

3. Aufgabe (11 Punkte)

(a) Berechnen Sie

$$\int_0^1 4x^2 e^{2x} dx.$$

(b) Berechnen Sie

$$\int 5\sin(x)\cos^4(x) \, dx.$$

(c) Untersuchen Sie, ob das folgende uneigentliche Integral existiert und berechnen Sie es gegebenenfalls.

$$\int_{0}^{\infty} \cos(x) \, \mathrm{d}x$$

Lösung:

(a) [4 Punkte] Mit zweifacher partieller Integration folgt

$$\int_0^1 4x^2 e^{2x} dx = 2x^2 e^{2x} \Big|_0^1 - \int_0^1 4x e^{2x} dx$$

$$= 2e^2 - 2x e^{2x} \Big|_0^1 + \int_0^1 2e^{2x} dx$$

$$= 2e^2 - 2e^2 + e^{2x} \Big|_0^1$$

$$= e^2 - 1.$$

(b) [4 Punkte] Mit der Substitution $y = \cos(x)$ und $dy = -\sin(x) dx$ folgt

$$\int 5\sin(x)\cos^4(x) dx = -\int 5y^4 dy = -y^5 + C$$
$$= -\cos^5(x) + C,$$

für beliebiges $C \in \mathbb{R}$.

(c) [3 Punkte] Angenommen, das uneigentliche Integral existiert. Dann ist sein endlicher Wert gegeben durch

$$\int_0^\infty \cos(x) \, \mathrm{d}x = \lim_{s \to \infty} \int_0^s \cos(x) \, \mathrm{d}x = \lim_{s \to \infty} \left(\sin(s) - \sin(0) \right).$$

Widerspruch, da $\sin(s)$ für $s\to\infty$ divergiert. Also existiert das uneigentliche Integral nicht.

4. Aufgabe (9 Punkte)

(a) Bestimmen Sie den folgenden Grenzwert.

$$\lim_{t \to 1} \frac{5t^4 - 4t^2 - 1}{4 - t - 3t^3}$$

(b) Geben Sie zwei konvergente Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ mit $b_n\neq 0$ für alle $n\in\mathbb{N}$ an, sodass

$$\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$$

divergiert.

(c) Beweisen Sie mittels vollständiger Induktion, dass für alle $n \in \mathbb{N} \setminus \{0\}$ gilt

$$\sum_{k=1}^{n} (2k-1) = n^2.$$

Lösung:

(a) [3 Punkte] Es darf die Regel von l'Hospital angewendet werden, da

$$\lim_{t \to 1} (5t^4 - 4t^2 - 1) = 0 = \lim_{t \to 1} (4 - t - 3t^3).$$

Damit folgt

$$\lim_{t \to 1} \frac{5t^4 - 4t^2 - 1}{4 - t - 3t^3} \stackrel{\text{L'H}}{=} \lim_{t \to 1} \frac{20t^3 - 8t}{-1 - 9t^2} = -\frac{12}{10} = -\frac{6}{5},$$

wobei im vorletzten Schritt die Grenzwertsätze verwendet wurden.

(b) [2 Punkte] Sei $a_n:=1/(n+1),\ n\in\mathbb{N}$ und $b_n:=1/(n+1)^2,\ n\in\mathbb{N}.$ Dann gilt für n gegen ∞

$$\frac{a_n}{b_n} = n + 1 \to \infty.$$

(c) [4 Punkte]

 $\overline{\text{IA}}$ Für n=1 ist die Aussage wahr:

$$\sum_{k=1}^{1} (2k-1) = 2 \cdot 1 - 1 = 1 = 1^{2}.$$

IV Die Aussage sei wahr für ein festes $n \in \mathbb{N} \setminus \{0\}$.

IS $n \to n+1$. Zu zeigen: $\sum_{k=1}^{n+1} (2k-1) = (n+1)^2$..

In der Tat gilt

$$\sum_{k=1}^{n+1} (2k-1) = 2(n+1) - 1 + \sum_{k=1}^{n} (2k-1) \stackrel{\text{IV}}{=} 2n + 1 + n^2 = (n+1)^2.$$

5. Aufgabe (13 Punkte)

(a) Bestimmen Sie die Lösungsmenge der folgenden Ungleichung in \mathbb{R} .

$$\frac{2}{-x^2 - 1} < -1$$

Hinweis: Hierbei ist keine Fallunterscheidung nötig.

(b) Bestimmen Sie die Lösungsmenge der folgenden Gleichung in \mathbb{C} .

$$z^3 = -27e^{-\pi i/2}$$

Hinweis: Die Lösungsmenge darf in kartesischer Form oder in Polarkoordinaten angegeben werden.

(c) Sei $q: D_q \subset \mathbb{C} \to \mathbb{C}$ gegeben durch

$$q(z) := \frac{4z}{(z+2)(z^2+4)}.$$

Geben Sie den maximalen Definitionsbereich $D_q \subset \mathbb{C}$ an und bestimmen Sie die komplexe Partialbruchzerlegung von q. Geben Sie die Koeffizienten der Partialbruchzerlegung in kartesischer Form an!

Lösung:

(a) [3 Punkte] Wir multiplizieren beide Seiten mit $-x^2 - 1$. Dabei müssen wir das Ungleichheitszeichen umdrehen, da $-x^2 - 1$ stets negativ ist:

$$2 > -1(-x^2 - 1) = x^2 + 1.$$

Subtraktion von 1 auf beiden Seiten führt auf

$$x^2 < 1$$
,

was auf die Lösungsmenge (-1,1) führt.

(b) [5 Punkte] Wir verwenden den Ansatz $z = re^{i\varphi}, r \ge 0$. Dann soll gelten

$$r^3 e^{3\varphi i} = z^3 = -27 e^{-\frac{\pi}{2}i} = 27 e^{\frac{\pi}{2}i}$$

Daraus folgt, dass r = 3 und

$$3\varphi = \frac{\pi}{2} + 2k\pi$$

für $k \in \mathbb{Z}$. Daraus ergibt sich die Lösungsmenge

$$\left\{3e^{i\pi/6}, 3e^{5i\pi/6}, 3e^{3i\pi/2}\right\}$$
.

(c) [5 Punkte] Der maximale Definitionsbereich von q ist $\mathbb{C} \setminus \{-2, 2i, -2i\}$. Zur Bestimmung der komplexen Partialbruchzerlegung betrachten wir den Ansatz

$$q(z) = \frac{4z}{(z+2)(z^2+4)} = \frac{a}{z+2} + \frac{b}{z+2i} + \frac{c}{z-2i},$$

wobei die Koeffizienten a,b,c mit der Zuhaltemethode gegeben sind durch

$$a = \frac{4z}{(z+2i)(z-2i)} \bigg|_{z=-2} = -1, \qquad b = \frac{4z}{(z+2)(z-2i)} \bigg|_{z=-2i} = \frac{1}{2} + \frac{1}{2}i,$$

$$c = \frac{4z}{(z+2)(z+2i)} \bigg|_{z=2i} = \frac{1}{2} - \frac{1}{2}i.$$

Damit ergibt sich für die komplexe Partialbruchzerlegung

$$q(z) = -\frac{1}{z+2} + \frac{1+i}{2(z+2i)} + \frac{1-i}{2(z-2i)}.$$

6. Aufgabe (8 Punkte)

(a) Zeigen Sie mit Hilfe des Zwischenwertsatzes, dass die Gleichung

$$x^7 = 1 - x$$

eine Lösung im Intervall [0, 1] besitzt.

(b) Zeigen Sie mit Hilfe des Mittelwertsatzes, dass für alle $a, b \in \mathbb{R}$ mit $0 \le a < b$ gilt:

$$na^{n-1} \le \frac{b^n - a^n}{b - a} \le nb^{n-1}.$$

Lösung:

(a) [4 Punkte] Umstellen der Gleichung ergibt

$$x^7 + x - 1 = 0.$$

Nun definieren wir die Funktion $f:[0,1]\to\mathbb{R}, f(x):=x^7+x-1.$

Da f ein Polynom ist, ist f stetig.

Weiterhin gilt f(0) = -1 und f(1) = 1.. Daher folgt aus dem Zwischenwertsatz, dass f eine Nullstelle im Intervall [0,1] hat. Diese Nullstelle ist dann Lösung der Gleichung.

(b) [4 Punkte] Sei $f:[0,\infty)\to\mathbb{R}$ die Funktion $x\mapsto x^n$.

Als Polynom ist f auf $[0, \infty)$ differenzierbar.

Aus dem Mittelwertsatz folgt, dass für jedes $a,b \in [0,\infty), \ a < b, \ \text{ein} \ \xi \in [a,b]$ existiert, sodass

$$\frac{b^n - a^n}{b - a} = f'(\xi) = n\xi^{n-1}.$$

Da $a \leq \xi \leq b$ ist, folgt aus der Monotonie von $x \mapsto nx^{n-1}$:

$$na^{n-1} \le \frac{b^n - a^n}{b - a} \le nb^{n-1}.$$