Technische Universität Berlin

Fakultät II – Institut für Mathematik Prof. Dr. Ferus

SS 05-06 25. Juli 2006

Juli – Klausur (Verständnisteil) Analysis III für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:			
Taschenrechner und Formelsammlunge handbeschriebenes A4 Blatt mit Notize A4 Blättern abzugeben. Mit Bleistift g wertet werden.	en. Die	Lösung	gen sin	d in R	einsch	rift auf
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	ung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt eine St u	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1:					-	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Sei T eine Möbius-Transformation für die:

$$T(\iota) = 0, T(0) = \infty, T(1) = 1 - \iota, T(-\iota) = 2.$$

Seien K der Einheitskreis um die 0 $(K = \{z \in \mathbb{C} : |z| = 1\})$ und $\Delta = \iota \mathbb{R}$ die imaginäre Achse. Wie werden K und Δ durch T transformiert?

2. Aufgabe 8 Punkte

Sei $H = \mathbb{R} \times]0; +\infty[$, und $h: H \longrightarrow \mathbb{R}$ gegeben durch

$$h(x;y) = \frac{1}{\pi} \left(\operatorname{Arg}(x - 1 + \iota y) - \operatorname{Arg}(x + 1 + \iota y) \right).$$

Geben Sie ein Dirichlet-Problem auf H an, also eine partielle Differentialgleichung zusammen mit bestimmten Randbedingungen, das durch h gelöst wird.

3. Aufgabe 10 Punkte

Seien $f(z)=\frac{e^{1/z}}{z^3-2z^2+z}$ und $g(z)=\frac{\sin z}{z^2}$. Geben Sie die Singularitäten von f und g an, und entscheiden Sie in jedem Fall ob diese eine wesentliche Singularität oder eine Polstelle ist. Falls eine Polstelle vorhanden ist, geben Sie auch ihre Ordnung an.

4. Aufgabe 7 Punkte

Sei $(f_n)_{n\geq 0}$ eine komplexe Folge für die:

$$\forall n \ge 0, \quad nf_n = f_{n-1} + 2f_{n-2}$$
 (wobei $f_{-1} = f_{-2} = 0$),

und sei $F(z) = \sum_{n=0}^{\infty} f_n z^{-n}$ die \mathbb{Z} -Transformierte von $(f_n)_{n \geq 0}$. Welcher Gleichung genügt F(z)?

5. Aufgabe 7 Punkte

Auf dem Interval $\left[\frac{\pi}{6}; \frac{\pi}{3}\right]$ betrachtet man das Rand-Eigenwertproblem

$$\begin{cases} (x^2 + 3x)\cos x \, u''(x) - (x^2 + 3x)\sin x \, u'(x) + \lambda u(x) = 0, \\ u(\frac{\pi}{6}) + u'(\frac{\pi}{6}) = 0 = u(\frac{\pi}{3}) + u'(\frac{\pi}{3}), \end{cases}$$

wobei $\lambda > 0$. Seien $u_k(x), u_l(x)$ zwei Eigenfunktionen zu verschiedenen Eigenwerte λ_k, λ_l . Welcher Orthogonalitätsrelation genügen u_k und u_l ?