Technische Universität Berlin

Fakultät II – Institut für Mathematik Prof. Dr. Ferus

SS 06 10. Oktober 2006

Oktober – Klausur (Verständnisteil) Analysis III für Ingenieure

Name: Vorname:						
MatrNr.:	Studi	engang	:			
Taschenrechner und Formelsammlunge handbeschriebenes A4 Blatt mit Notize A4 Blättern abzugeben. Mit Bleistift g wertet werden.	en. Die	Lösun	gen sin	d in R	einsch	rift auf
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer Die Bearbeitungszeit beträgt eine St u	aus der eine k u	Vorles	sung lö	sbar se	in. Gel	_
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				*	v	
Korrektur						
	1	2	3	4	5	Σ

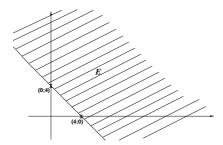
1. Aufgabe 8 Punkte

Beschreiben Sie geometrisch (mit einer Skizze) folgende Teilmengen von \mathbb{C} :

- a) $E = \{ z \in \mathbb{C} : Re((1 \iota)z 4) > 0 \}.$
- b) $F = \{z \in \mathbb{C} : |z|^2 = 2Re(z) + 3\}.$
- a) Mit $z = x + \iota y$ erhält man

$$Re((1-\iota)z-4) = Re((1-\iota)(x+\iota y)-4) = Re(x+y-4+\iota(y-x)) = x+y-4,$$

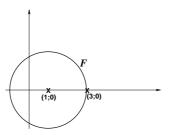
also ist E die unten skizzierte offene Halbebene.



b) Wieder mit Kartesischen Koordinaten hat man hier

$$|z|^2 - 2Re(z) = x^2 + y^2 - 2x = (x-1)^2 + y^2 - 1,$$

also ist $F = \{z \in \mathbb{C} : (Re(z) - 1)^2 + Im(z)^2 = 4\}$ den unten skizzierten Kreis (um (1;0) zentriert, mit Radius 2).



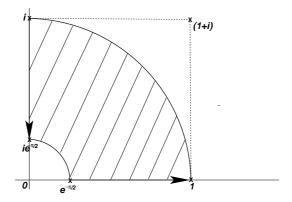
2. Aufgabe 8 Punkte

Für die Abbildung $f(z) = \iota^z = w$ bestimme und skizziere man das Bild des Quadrates mit den Ecken $0, 1, (1 + \iota), \iota$.

Für $x \in [0;1]$ gilt

$$f(x) = e^{\iota \frac{\pi}{2}x}, f(1+\iota x) = e^{\iota(1+\iota x)\frac{\pi}{2}} = \iota e^{-\frac{\pi}{2}x}, f(x+\iota) = e^{\iota \frac{\pi}{2}(x+\iota)} = e^{-\frac{\pi}{2}}e^{\iota \frac{\pi}{2}x}, f(x\iota) = e^{-\frac{\pi}{2}x}.$$

Die erste Gleichung zeigt, daß das Segment [0;1] auf einem Kreisbogen des Radius 1 um die 0 abgebildet wird, zweitens sieht man, daß das Segment $[1;(1+\iota)]$ auf dem Segment $[\iota;e^{-\frac{\pi}{2}}\iota]$ abgebildet wird, drittens wird das Segment $[(1+\iota);\iota]$ auf einem Kreisbogen des Radius $e^{-\frac{\pi}{2}}$ um die 0 abgebildet, und schließlich wird das Segment $[\iota;0]$ auf dem Segment $[e^{-\frac{\pi}{2}};1]$ abgebildet. Damit läßt sich das Bild des angegebenen Quadrates durch f skizzieren (siehe unten).



3. Aufgabe 8 Punkte

Skizzieren Sie den konzentrischen Kreisring

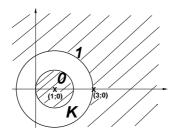
$$K = \{(x, y) \in \mathbb{R}^2 : 1 \le (x - 1)^2 + y^2 \le 4\},$$

und geben Sie die Lösung zum Dirichlet-Problem

$$\begin{cases} \Delta h(x,y) &= 0, \text{ für } 1 < (x-1)^2 + y^2 < 4\\ h(x,y) &= 0, \text{ für } (x-1)^2 + y^2 = 1\\ h(x,y) &= 1, \text{ für } (x-1)^2 + y^2 = 4 \end{cases}$$

an. (Hinweis: keine langen Berechnungen nötig, Lösung basiert auf einer sehr bekannten Funktion).

Das angegebene Dirichlet-Problem entspricht folgende Skizze:



Bekannt ist, daß jede Funktion von der Art $h(x,y) = A + B \ln \sqrt{(x-1)^2 + y^2}$ harmonisch auf K ist, und wir müssen nur noch die reellen Konstanten A und B richtig wählen, damit die vorgegebenen Randbedingungen getroffen werden. Für $(x-1)^2+y^2=$ 1 hat man h(x,y)=A, und für $(x-1)^2+y^2=4$ erhält man $h(x,y)=A+B\ln 2$, also sind die gesuchten Konstanten $A=0,\,B=1/\ln 2,\,$ und die eindeutige Lösung zum Dirichlet-Problem $h(x,y)=\frac{\ln\sqrt{(x-1)^2+y^2}}{\ln 2}=\frac{\ln\left((x-1)^2+y^2\right)}{2\ln 2}$.

4. Aufgabe 8 Punkte

Seien $f(z) = \frac{\cos(\frac{1}{z^2})}{z^2(z+1)^2}$ und $g(z) = \frac{\sin(z^2)}{z^4}$. Geben Sie die Singularitäten von f und g an und entscheiden Sie in jedem Fall, ob es wesentliche Singularitäten oder Polstellen sind. Falls eine Polstelle vorhanden ist, geben Sie auch ihre Ordnung an.

 \bullet $z_0 = 0$ ist eine wesentliche Singularität von f (die Laurent-Reihenentwicklung von fum $z_0 = 0$ beinhaltet unendlich viele Termen negativer Ordnung), während $z_1 = -1$ eine Polstelle zweiter Ordnung ist.

• $z_0 = 0$ ist eine Polstelle zweiter Ordnung von g, weil $g(z) = \frac{\sin(z^2)}{z^2} \cdot \frac{1}{z^2} = g_1(z) \cdot g_2(z)$, und für g_1 ist $z_0 = 0$ nur eine hebbare Singularität.

5. Aufgabe 8 Punkte

Für jedes $\lambda > 0$ ist die allgemeine Lösung zur Differentialgleichung

$$x^4 u''(x) + \lambda u(x) = 0$$

durch $u(x) = x \left(A \sin \frac{\sqrt{\lambda}}{x} + B \cos \frac{\sqrt{\lambda}}{x} \right)$ gegeben, wobei A, B reelle Koeffizienten sind.

Falls diese Differentialgleichung auf dem Interval $[\frac{1}{2};1]$ betrachtet wird zusammen mit Dirichletschen Randbedingungen $(u(\frac{1}{2}) = u(1) = 0)$, was sind die Eigenwerte λ_k und zugehörige Eigenfunktionen $u_k(x)$?

(**Hinweis**: $\sin(\frac{\sqrt{\lambda}}{1/2})\cos\sqrt{\lambda} - \sin\sqrt{\lambda}\cos(\frac{\sqrt{\lambda}}{1/2}) = \sin\sqrt{\lambda}$). Welche Orthogonalitätsrelation genügen die Eigenfunktionen u_k und u_l für $k \neq l$?

Für die allgemeine Lösung $u(x) = x \left(A \sin \frac{\sqrt{\lambda}}{x} + B \cos \frac{\sqrt{\lambda}}{x} \right)$ lassen sich die Randbedingungen umschreiben als folgendes System (wo A und B die unbekannten sind):

$$\begin{cases} (\frac{1}{2}\sin 2\sqrt{\lambda})A + (\frac{1}{2}\cos 2\sqrt{\lambda})B & = 0\\ (\sin \sqrt{\lambda})A + (\cos \sqrt{\lambda})B & = 0 \end{cases}$$

Die Determinante dieses Systems ist $\sin(2\sqrt{\lambda})\cos\sqrt{\lambda} - \sin\sqrt{\lambda}\cos(2\sqrt{\lambda}) = \sin\sqrt{\lambda}$, also besitzt es eine nicht-triviale Lösung genau dann, wenn $\sin \sqrt{\lambda} = 0$. Die Eigenwerte des betrachteten Problems sind also durch $\lambda_k = k^2 \pi^2$ gegeben, wobei $k \geq 1$ und ganz ist, und die entsprechende Eigenfunktion u_k zu λ_k ist durch $u_k(x)=x\sin\frac{k\pi}{x}$ gegeben $(A \neq 0 \text{ und } B = 0 \text{ liefert eine nicht-triviale Lösung zum obigen System für jede Eigen$ wert λ_k).

Schließlich erfüllen zwei verschiedene Eigenfunktionen u_k , u_l die Orthogonalitätsrelation

$$\int_{1/2}^{1} u_k(x)u_l(x) \cdot \frac{1}{x^4} dx = 0$$

(siehe Skript).