Juli-Klausur (Rechenteil) Analysis III für Ingenieure

Name:	Vorname:					
Matr.–Nr.:	Studiengang	ŗ :				
Neben einem handbeschriebenen A4 Blatt mit	Notizen sind	keine I	Hilfsmit	ttel zug	elassen	1.
Keine Taschenrechner und Aufzeichnungen zu	gelassen.					
Die Lösungen sind in Reinschrift auf A4 Blät suren können nicht gewertet werden.	ttern abzugebe	en. Mit	Bleisti	ft gesc	hrieben	ne Klau-
Dieser Teil der Klausur umfasst die Rechenau chenweg an.	fgaben. Gebei	n Sie ir	nmer d	en voll	ständiş	gen Re-
Die Bearbeitungszeit beträgt 60 Minuten.						
Korrektur						
		1	2	3	4	Σ
	Г		1			

1. Aufgabe 9 Punkte

Es ist

$$\frac{\partial u}{\partial x} = 3e^{3x}\cos(ay), \frac{\partial^2 u}{\partial x^2} = 9e^{3x}\cos(ay),$$
$$\frac{\partial u}{\partial y} = -ae^{3x}\sin(ay) \text{ und } \frac{\partial^2 u}{\partial y^2} = -a^2e^{3x}\cos(ay).$$

Damit ist

$$\Delta u(x,y) = (9 - a^2)e^{3x}\cos(ay).$$

Die Funktion u ist dann für a=3 harmonisch.

Die gesuchte Funktion v erfüllt die Cauchy-Riemannsche DGL:

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 3e^{3x}\cos(3y)$$
 und $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = 3e^{3x}\sin(3y)$

$$\mathrm{d.h}\,v(x,y)=e^{3x}\sin(3y)+F(x)\,\mathrm{und}\,-3e^{3x}\sin(3y)-F'(x)=-3e^{3x}\sin(3y)\Rightarrow F(x)=c\in\mathbb{R}.$$

Aus der Bedingung f(0) = 1 + i folgt: $u(0,0) + iv(0,0) = e^0 \cos(0) + i(e^0 \sin(0) + c) = 1 + i$ d.h $1 + ci = 1 + i \Rightarrow c = 1$.

Damit ist $v(x, y) = e^{3x} \sin(3y) + 1$ und

$$f(x+iy) = e^{3x}\cos(3y) + i(e^{3x}\sin(3y) + 1).$$

2. Aufgabe 10 Punkte

(i) Es gilt:

$$f(z) := \frac{1}{z-1} = \frac{1}{z-i+i-1} = \frac{1}{i-1} \frac{1}{1-\frac{z-i}{1-i}} = \frac{1}{i-1} \sum_{k=0}^{\infty} \left(\frac{z-i}{1-i}\right)^k = -\sum_{k=0}^{\infty} \left(\frac{(z-i)^k}{(1-i)^{k+1}}\right).$$

(ii) Es ist

$$g(z) = \frac{1}{z-i} \frac{1}{z-1} = -\frac{1}{z-i} \sum_{k=0}^{\infty} \left(\frac{(z-i)^k}{(1-i)^{k+1}} \right) = -\sum_{k=0}^{\infty} \left(\frac{(z-i)^{k-1}}{(1-i)^{k+1}} \right) = -\sum_{k=-1}^{\infty} \left(\frac{(z-i)^k}{(1-i)^{k+2}} \right).$$

der Hauptteil der Laurentreihe ist $-\frac{1}{(1-i)(z-i)}$ und der Nebenteil ist $-\sum_{k=0}^{\infty} \left(\frac{(z-i)^k}{(1-i)^{k+2}}\right)$.

(iii) g hat zwei Singularitäten $z_0=1$ und $z_1=i$. Beide sind Pole 1. Ordnung und es gilt $\mathrm{Res}(g(z),1)=\frac{1}{1-i}=\frac{1}{2}(1+i)$ und $\mathrm{Res}(g(z),i)=\frac{1}{i-1}=-\frac{1}{2}(1+i)$.

3. Aufgabe 10 Punkte

Mit der Substitution $z=e^{it}\Rightarrow dz=iz\,dt$, erhalten wir:

$$\int_0^{2\pi} \frac{dt}{(10 - 6\cos t)} = \int_{K(0,1)} \frac{dz}{iz(10 - 3z - 3\frac{1}{z})} = -i \int_{K(0,1)} \frac{dz}{(10z - 3z^2 - 3)}.$$

Die Polstellen sind $z_1=\frac{1}{3}$ und $z_2=3$ mit $z_1\in D(0,1)$ und $z_2\notin D(0,1)$. Damit ist $\int_0^{2\pi} \frac{dt}{(10-6\cos t)} = \int_{K(0,1)} \frac{i\,dz}{3(z-3)(z-\frac{1}{3})} = 2\pi i\,\operatorname{Res}(\frac{i}{(3z-1)(z-3)},\frac{1}{3}) = \frac{\pi}{4}.$

4. Aufgabe 11 Punkte

(i) Es ist
$$u_2 = 2u_1 + 8u_0 = 12, u_3 = 2u_2 + 8u_1 = 40$$
 and $u_4 = 2u_3 + 8u_2 = 176$.

(ii) Es gilt:

$$z^{2}(F(z) - u_{0} - u_{1}z^{-1}) = 2z(F(z) - u_{0}) + 8F(z).$$

Daraus folgt:

$$F(z) = \frac{z^2}{z^2 - 2z - 8}.$$

(iii) Es ist

$$\frac{F(z)}{z} = \frac{z}{z^2 - 2z - 8} = \frac{z}{(z+2)(z-4)} = \frac{2(z+2) + z - 4}{3(z+2)(z-4)} = \frac{2}{3(z-4)} + \frac{1}{3(z+2)}.$$

(iv) Es gilt:

$$F(z) = \frac{2z}{3(z-4)} + \frac{z}{3(z+2)} = \frac{2}{3} \sum_{k=0}^{\infty} 4^k z^{-k} + \frac{1}{3} \sum_{k=0}^{\infty} (-2)^k z^{-k}.$$

Daraus folgt:

$$u_k = \frac{2}{3}4^k + \frac{1}{3}(-2)^k$$

für $k \in \mathbb{N}$, $k \ge 2$.

$$\Rightarrow u_2 = \tfrac{2}{3}(16) + \tfrac{1}{3}(4) = 12, u_3 = \tfrac{2}{3}(64) + \tfrac{1}{3}(-8) = 40 \text{ und } u_4 = \tfrac{2}{3}(256) + \tfrac{1}{3}(16) = 176.$$