Technische Universität Berlin Fakultät II – Institut für Mathematik G. Penn-Karras

SoSe 2011 12.10.2011

Oktober – Klausur Analysis III für Ingenieure

Name: Vorname:

MatrNr.: Studier	ngang: .					
Neben einem handbeschriebenen A4 Blatt sind keine	Hilfsmi	ttel zug	elassen			_
Die Lösungen sind in Reinschrift auf A4 Blättern Klausuren können nicht gewertet werden.	abzuge	ben. M	it Bleis	stift ges	schrieben	ıe
Geben Sie im Rechenteil immer den vollständigen	Reche	enweg	an.			
Im Verständnisteil sollten die Aufgaben ohne große aus der Vorlesung lösbar sein. Geben Sie immer eine					${ m enntnisse}$	'n
Die Bearbeitungszeit beträgt 90 Minuten.						
Die Gesamtklausur ist mit 30 von 60 Punkten bestand Klausur mindestens 10 von 30 Punkten erreicht werde		nn in je	dem der	r beidei	n Teile de	– er
Viel Erfolg!						
Korrektur						
	1	2	3	4	Σ	
Rechenteil:						
	5	6	7	8	Σ	
Verständnisteil:						

Rechenteil

1. Aufgabe 10 Punkte

Zeigen Sie mithilfe der Cauchy-Riemannschen Differentialgleichungen, dass die Funktion

$$f(z) = ze^z$$

analytisch in ganz \mathbb{C} ist.

2. Aufgabe 10 Punkte

Bestimmen Sie alle möglichen Laurentreihenentwicklungen der Funktion

$$f(z) = \frac{z}{4z - 1}$$

um den Entwicklungspunkt $z_0=0$. Geben Sie jeweils die Konvergenzbereiche an, auf denen die Laurentreihe konvergiert.

3. Aufgabe 5 Punkte

Sei $\gamma:[0,6\pi]\to\mathbb{C},\,\gamma(t)=e^{it}.$ Berechnen Sie

$$\int_{\gamma} \frac{1}{z} dz.$$

4. Aufgabe 5 Punkte

Verwenden Sie eine Lyapunov-Funktion der Form $V(x,y)=a\frac{x^2}{2}+b\frac{y^2}{2}$ um das Differentialgleichungssystem

$$x' = -x^3 - y^3$$

$$y' = 2xy^2 - y^3$$

auf Stabilität und asymptotische Stabilität im Punkt (0,0) zu untersuchen.

Verständnisteil

5. Aufgabe 8 Punkte

Es sei T eine Möbiustransformation, für die gilt

$$T(i) = \infty$$
, $T(-1) = 1 + i$, $T(1) = 1 - i$, $T(0) = 2$.

Bestimmen Sie die Bilder des Einheitskreises $\{z \in \mathbb{C} : |z| = 1\}$ und der reellen Achse unter T.

6. Aufgabe 8 Punkte

Bestimmen Sie eine in $\mathbb{C}\setminus\{1,i\}$ analytische Funktion f mit einfachen Polen in 1 und i, welche die folgende Gleichung erfüllt:

$$\int_{|z|=42} f(z) \, dz = 42.$$

7. Aufgabe 8 Punkte

Es sei z_0 der Schnittpunkt der beiden Kurven

$$C_1: z_1(s) = se^{i\frac{\pi}{4}}, \quad 0 \le s < \infty,$$

$$C_2: z_2(t) = e^{it}, \quad -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$$

Gegeben sei die Funktion $f(z) = z^3 + 3z^2 + 3z + 4$.

Begründen Sie, dass sich die Kurven $f(C_1)$ und $f(C_2)$ im Punkt $f(z_0)$ rechtwinklig schneiden.

8. Aufgabe 6 Punkte

Welche der folgenden Aussagen sind wahr, und welche sind falsch? Geben Sie jeweils eine **Begründung oder** ein **Gegenbeispiel** an. Jede richtige und vollständige Antwort gibt 2 Punkte. Antworten ohne Begründung oder mit einer falschen Begründung bringen keine Punkte.

- (i) Das Produkt zweier Möbiustransformationen ist wieder eine Möbiustransformation.
- (ii) Jede Möbiustransformation T mit $T(\infty) = \infty$ bildet Geraden auf Geraden ab.
- (iii) Sei f auf ganz $\mathbb C$ analytisch. Falls $\int\limits_C f(z)\,dz=0$ für jede geschlossene Kurve C ist, dann ist f(z)=0 für alle $z\in\mathbb C$.