Name:	MatrNr.:

Wiederholung Multiple-Choice-Test zu Berechenbarkeit und Komplexität (A) TU Berlin, 04.04.2019

(Niedermeier/Bentert/Zschoche, Wintersemester 2018/2019)

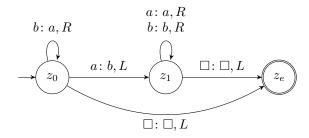
Arbeitszeit: 20 Minuten, Gesamtpunktzahl: 25

Hinweis: Je Aufgabe ist **mindestens** eine Antwortmöglichkeit korrekt. Sobald eine **falsche** Antwortmöglichkeit angekreuzt wurde, gibt es **Null** Punkte für die betroffene Aufgabe.

Aufgabe 1: Turing-Maschinen

(6 Punkte)

Betrachten Sie die Turing-Maschine $M=(\{z_0,z_1,z_e\},\{a,b\},\{a,b,\Box\},\delta,z_0,\Box,\{z_e\}),$ wobei δ die folgende graphische Darstellung hat:



Welche der folgenden Aussagen sind korrekt?

Hinweis zur Notation: Im Folgenden steht "Eingabe" für den Bandinhalt vor der Berechnung und "Ausgabe" für den Bandinhalt nach der Berechnung. Der Lese/Schreibkopf steht zu Beginn der Berechnung auf dem ersten Zeichen der Eingabe.

- X Die gegebene Turing-Maschine berechnet bei Eingabe bbab die Ausgabe aabb.
- X Die gegebene Turing-Maschine akzeptiert die Eingabe a.
- Die gegebene Turing-Maschine berechnet bei Eingabe abab die Ausgabe baab.
- X Die gegebene Turing-Maschine berechnet bei Eingabe $a^i b^j$ mit $i, j \ge 1$ die Ausgabe $ba^{i-1}b^j$.
- X Die gegebene Turing-Maschine berechnet bei Eingabe $b^i a^j$ mit $i, j \ge 1$ die Ausgabe $a^i b a^{j-1}$.

Aufgabe 2: GOTO-Berechenbarkeit

(3 Punkte)

Welche der folgenden Aussagen sind korrekt?

- X Es existiert eine GOTO-berechenbare Funktion, die LOOP-berechenbar ist.
- X Es existiert eine GOTO-berechenbare Funktion, die nicht LOOP-berechenbar ist.
- Es existiert eine GOTO-berechenbare Funktion, die nicht Turing-berechenbar ist.
- | X | Es existiert eine GOTO-berechenbare Funktion, die Turing-berechenbar ist.

Aufgabe 3: LOOP-Programme

(6 Punkte)

Betrachten Sie folgendes LOOP-Programm:

I	Input: Eine natürliche Zahl $n \ge 0$.	
	$egin{aligned} x_2 &\coloneqq x_2 + 0; \ c_0 &\coloneqq x_0 + 0; \end{aligned}$	
	$LOOP\ x_1\ DO$	
4	$x_2 \coloneqq x_2 + 1;$ LOOP x_2 DO	
5 6	$x_0 \coloneqq x_0 + 1$	
7	$\mathbf{END};$	
8 H	END;	
	Die "Eingabe" ist in x_1 gespeichert, die "Ausgabe" steht am Ende in x_0 und für alle $i \in \mathbb{N} \setminus \{1\}$ ist in der Variable x_i initial 0 gespeichert.	
	Welche Funktion berechnet das gegebene LOOP-Programm?	
	X $(n^2+n)/2$ n^2-n	
	$\begin{array}{ c c c c c }\hline X & (n^2+n)/2 & & & & & \\\hline & n! & & & & \\\hline & & & & & \\\hline & & & & & \\\hline & & & &$	
Aufgabe 4:	Berechenbare Funktionen (4 Punkte)	
majgave 4.	Welche der folgenden Aussagen sind korrekt?	
	X Die nirgends definierte Funktion Ω , die durch $\Omega(x) = \bot$ gegeben ist, ist berechenbar.	
	X Die Ackermannfunktion ist berechenbar.	
	Die Funktion $P \colon \{0,1\}^* \to \{0,1\}$, die durch	
	$P(x) = \begin{cases} 1, & \text{falls } x \text{ eine PCP-Instanz kodiert, die eine Lösung hat} \\ 0, & \text{sonst.} \end{cases}$	
	gegeben ist, ist berechenbar.	
	Folgende Funktion $P \colon \{1\}^* \to \mathbb{N}$ ist berechenbar: Zu jeder Zeichenkette x , die nur aus 1'en besteht, ist $P(x)$ die Größe einer kleinsten Turing-Maschine, die bei leerer Eingabe das Wort x aufs Band schreibt und dann in einen akzeptierenden Zustand geht. Hierbei ist die Größe einer Turing-Maschine definiert als die Anzahl ihrer Zustände.	
Aufgabe 5:	Turing-Maschinen (6 Punkte)	
raygave o.	Welche der folgenden Aussagen sind korrekt?	
	Für jede totale Funktion $f: \mathbb{N} \to \mathbb{N}$ gibt es höchstens eine Turing-Maschine, die diese berechnet.	
	Für jede totale Funktion $f: \mathbb{N} \to \mathbb{N}$ gibt es mindestens eine Turing-Maschine, die diese berechnet.	
	X Wenn eine totale Funktion f von einer Mehrband-Turing-Maschine berechnet werden kann, dann kann die Funktion f auch von einer Einband-Turing-Maschine berechnet werden.	
	X Seien $f, g: \mathbb{N} \to \{0, 1\}$ zwei berechenbare Funktionen. Die Funktion $h: \mathbb{N} \to \{0, 1\}$, die	
	durch $h(x) = (f(x) + g(x)) \pmod{2}$ gegeben ist, ist auch berechenbar.	
	X Jede Turing-berechenbare totale Funktion $f: \mathbb{N} \to \mathbb{N}$ kann von einer Turing-Maschine akzeptiert werden, deren Lese/Schreibkopf sich in jedem Rechenschritt nach rechts oder	

nach links bewegt.