
Compiler Design GP

March 2024

1.1 Hopcroft's Minimization Algorithm

(i) Fill out the table with Hopcroft's algorithm.

Iteration	Groups	Split on a	Split on b

(ii) Draw the minimized DFA.

2.1 Grammars

$$S \to ABC$$

$$A \to aA \mid \varepsilon$$

$$B \to bB \mid \varepsilon$$

$$C \to cA \mid \varepsilon$$

Show a leftmost derivation for the string abbc. At each step underline which non terminal is derived.

3.1 CFG

- (i) Construct the control flow graph.
- (ii) Find the reaching definitions by filling in the table of IN and OUT.

Line	IN	OUT
1		
2		
3		
4		
5		
7		
8		
9		
11		

Register Allocation

```
1 load r1, @a
2 load r2, @b
3 mult r3, r1, r2
4 load r4, @c
5 load r5, @d
6 div r6, r4, r5
7 add r7, r3, r6
```

(i) Fill out the table of liveness ranges.

	1	2	3	4	5	6	7
r1							
r2							
r3							
r4							
r5							
r6							
r7							

(ii) Draw the register allocation graph.

- (iii) Find a minimal coloring for the register allocation graph.
- (iv) Without changing the order of instructions rewrite the code to use a minimal number of registers.

Optimizations

$$y = 100 * x;$$

Assume multiplication takes 10 cycles and addition and shifting each take only 1 cycle.

- (i) Rewrite the code to use fewer cycles.
- (ii) Now assuming multiplication takes x cycles, calculate the minimum x, such that your code is still faster.