
Compiler Design Memory Protocol
Wintersemester 2022/23

Exam in presence

60min, no tools allowed

50 points in total

1.) Syntax and Semantics [11p]

SAXPY Grammar for Basic Linear Algebra Subprogram BLAS given

Code example:

Grammar:

a) Extend the Grammar for the operator += . It should accept both y[i] = a *

x[i] + y[i]; and y[i] += a * x[i]

b) Does line 2 of the code example need to be closed by ; ? Justify your
answer.

c) Eliminate the left recursion for the Non-Terminals E and T

d) What parser do and don't work with the initial and your final grammar ?

2.) Intermediate Representation [12p]

Code example given

for i in [0..n]:
 y[i] = a * x[i] + y[i];

G -> Ss

Ss -> S Ss | epsilon

S -> A; | L

L -> for id in [E..E]: B

B -> {S} | S

A -> V = E

E -> E + T

T -> T * F

F -> V | num

V -> id[E] | id

a) Construct the Control Flow Graph

b) Construct the Dominator Tree

c) Calculate the Dominance Frontier for line 3, 4 and 5

d) Rewrite the Control Flow Graph into Single Assingment Form. Use the
operator only for the variable i

3.) Loop Unrolling [10p]

Code Example

a) Do a loop unrolling of the code example above by the factor 4

b) Explain briefly what is necessary if n is not evenly dividable by 4

4.) Instruction Selection, Instruction Scheduling
[12p]

Assembly Code of modified NVIDIA PTX is given

n = ...;

i = 0;

while (i < n){

y[i] = a * x[i] + y[i];

 i = i + 1;

}

return y;

ϕ

for (int i=0; i<n; i++){

 y[i] = a * x[i] + y[i];

}

ld.u32 r1, [@i] // load value of i into r1

ld.f32 r2, [@a] // load value of a into r2

ld.u64 r3, @x // load address of x into r3

ld.u64 r4, @y

shl.b64 r5, r1, 2 // r5 = i * 4

add.u64 r6, r3, r5

add.u64 r2, r4, r5

ld.f32 r8, [r6]

ld.f32 r9, [r7]

mul.f32 r10, r2, r8 // r10 = a * r8

a) Construct the Precedense Graph

b) There hardware, which allows performing an add and mul simultaneously. It

can be called with the operator fma.f32 r, x, y, z which is equivilant to r =
x * y + z . Explain why a compiler whould choose this operand over a single

add and mul

c) Show that the code above can be rewritten with fma.f32

Comment: I ask during the exam that the fma.f32 is only defined for Floating
Points)

add.f32 r11, r10, r9 // r11 = r10 + r9

st.f32 [r7], r11

