

Final Examination
Digital Image Processing

Winter term 2016/17

Prof. Dr. Olaf Hellwich
Dr. Ronny Hänsch

Name:

Student ID number:

Auxiliary resources: none

A

February 21, 2017

DO NOT OPEN THIS EXAMINATION SHEET UNTIL YOU ARE TOLD TO DO SO!

Write your **name** and **student ID** in the corresponding places at the top of this page **now**.

Books, notes, dictionaries, own empty sheets of paper, pocket calculators are **not allowed**.

Use only a pen. Everything written with a pencil will not be taken into account.

If you do not understand a question, please **ask**.

It will be to your advantage to read the entire examination before beginning to work.

The exam is to the largest part a **multiple choice** test, where the questions are divided into blocks.

For each question there is at least **one and at most four** correct answers.

The number of points p for a single correct answer are stated next to the question.

Please note, that there is a **penalty of $-p/2$ points** for a wrong answer.

The minimal number of points for each block is 0 (i.e. no negative points for whole blocks).

	Which of the following numbers is even?				2P
	i) 2	ii) 3	iii) 4	iv) 5	
Example 1			X (correct +2P)		Result: 2P
Example 2		X (incorrect: -1P)	X (correct +2P)		Result: 1P
Example 3	X (correct +2P)		X (correct +2P)		Result: 4P

Notation:

Black = Gray level of 0

White = Gray level of 255

Lots of luck and do your best!

Question	i)	ii)	iii)	iv)
1.				
2.				
3.				
4.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27				
28.				
29.				
30.				
31.				

Total: 55 points

Block I

1. Given an **optical camera** with square pixels, a principal distance of $200px$, no skew, and a principal point at $(10,10)$, which of the following is the correct **algebraic model** of the camera? 1P

i) $\begin{bmatrix} 10 & 0 & 200 \\ 0 & 10 & 200 \\ 0 & 0 & 1 \end{bmatrix}$	ii) $\begin{bmatrix} 200 & 0 & 10 \\ 0 & 200 & 10 \\ 0 & 0 & 1 \end{bmatrix}$	iii) $\begin{bmatrix} 20 & 0 & 1 \\ 0 & 20 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	iv) $\begin{bmatrix} -10 & 0 & 200 \\ 0 & -10 & 200 \\ 0 & 0 & 1 \end{bmatrix}$
--	---	--	---

2. **Digitization and quantization** are two necessary steps while creating digital images from a continuous signal. Assume that a digitization with four and a quantization with eight samples were used to create an image. 1P

Which of the properties stated below has the **resulting image**?

i) Size of $4 \times 4px$ and 8 gray levels	ii) Size of $8 \times 8px$ and 4 gray levels	iii) Size of $4 \times 4px$ and 4 gray levels	iv) Size of $8 \times 8px$ and 8 gray levels
---	--	---	--

3. Measurement **noise in optical images** is commonly assumed as being 1P

i) homogeneous.	ii) Gaussian distributed.	iii) multiplicative.	iv) having the mean value of 1.
-----------------	---------------------------	----------------------	---------------------------------

4. The so-called “**black level**” of an optical camera is 1P

- i) the brightness level at which the camera still makes good images.
- ii) the signal-to-noise-ratio obtained when taking images in darkness.
- iii) an offset which leads to a positive pixel value even if no light was measured by this pixel.
- iv) the smallest value of the final image.

Block II

5. Given the following **relative grayscale histogram** $h(g)$, provide the intensity values of a **possible image** in Figure 1. 1P

Please note that the full image range is from 0 to 255. The majority of the histogram values with $h(g) = 0$ is not shown.

g	$h(g)$
0	0.25
1	0.125
2	0
3	0.25
4	0.25
5	0.125

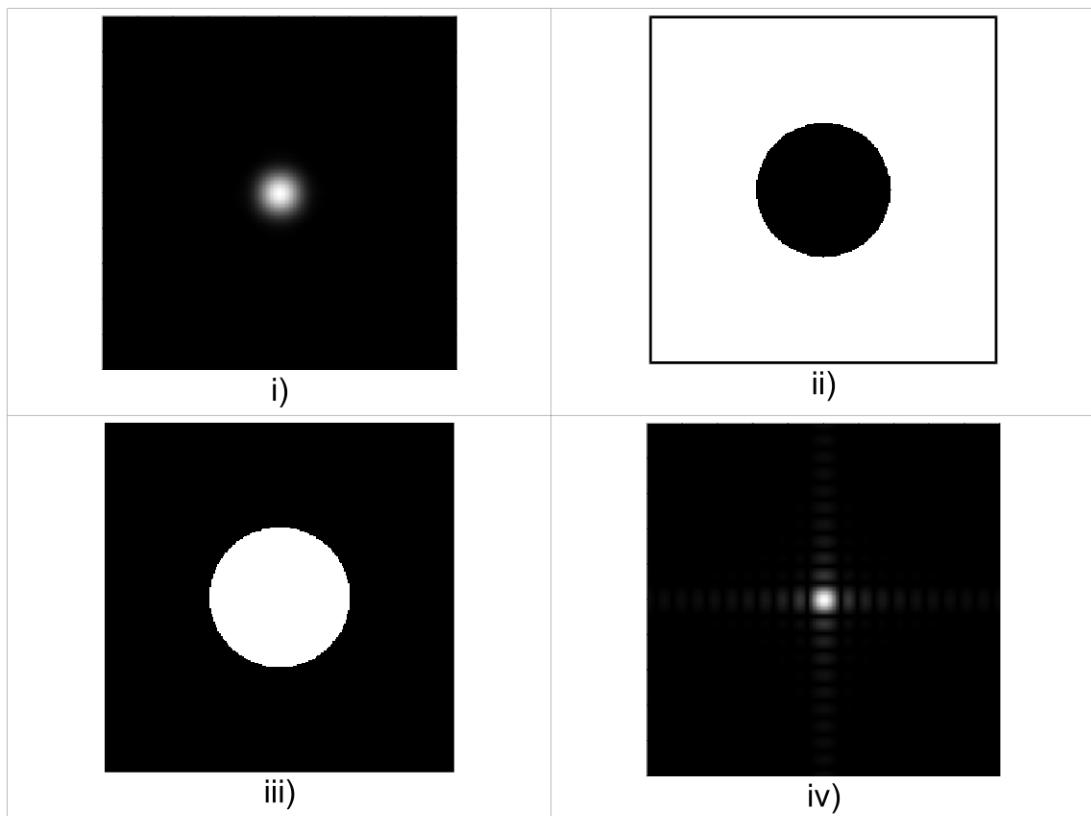
Figure 1

6. If **histogram equalization** is applied to the image of Question 5., which of 2P

the relative gray level histograms below belongs to the resulting image?

i)	<table border="1"> <tr> <td>g</td><td>0</td><td>51</td><td>153</td><td>204</td><td>255</td></tr> <tr> <td>h(g)</td><td>0.25</td><td>0.125</td><td>0.25</td><td>0.25</td><td>0.125</td></tr> </table>	g	0	51	153	204	255	h(g)	0.25	0.125	0.25	0.25	0.125
g	0	51	153	204	255								
h(g)	0.25	0.125	0.25	0.25	0.125								
ii)	<table border="1"> <tr> <td>g</td><td>0</td><td>51</td><td>153</td><td>204</td><td>255</td></tr> <tr> <td>h(g)</td><td>1/6</td><td>1/6</td><td>1/6</td><td>1/6</td><td>1/6</td></tr> </table>	g	0	51	153	204	255	h(g)	1/6	1/6	1/6	1/6	1/6
g	0	51	153	204	255								
h(g)	1/6	1/6	1/6	1/6	1/6								
iii)	<table border="1"> <tr> <td>g</td><td>63</td><td>95</td><td>159</td><td>223</td><td>255</td></tr> <tr> <td>h(g)</td><td>0.25</td><td>0.125</td><td>0.25</td><td>0.25</td><td>0.125</td></tr> </table>	g	63	95	159	223	255	h(g)	0.25	0.125	0.25	0.25	0.125
g	63	95	159	223	255								
h(g)	0.25	0.125	0.25	0.25	0.125								
iv)	<table border="1"> <tr> <td>g</td><td>3</td><td>5</td><td>9</td><td>13</td><td>15</td></tr> <tr> <td>h(g)</td><td>0.25</td><td>0.125</td><td>0.25</td><td>0.25</td><td>0.125</td></tr> </table>	g	3	5	9	13	15	h(g)	0.25	0.125	0.25	0.25	0.125
g	3	5	9	13	15								
h(g)	0.25	0.125	0.25	0.25	0.125								

7. The application of **histogram equalization** to an image A, resulted in the 1P image B. If histogram equalization is applied to B, then the resulting image C will have


i) **more contrast** than image B. ii) **less contrast** than image B.
 iii) the **same contrast** as image B. iv) the **same contrast** as image A.

Block III

The following matrices represent kernels of **linear shift-invariant filters**.

i)	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	ii)	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$	iii)	$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	iv)	$\begin{bmatrix} 1 & 2 & 1 \\ 2 & -4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$
----	---	-----	--	------	---	-----	--

8. Which of the filters above can be applied as **separable filters**? 1P
 9. Which of the filters above can be applied by using **integral images**? 1P
 10. Which of the filters above is only a **low-pass filter**? 1P

The images above show the **amplitude of spectra** of different filters (where black means zero amplitude and white means positive amplitude).

11. Which of the spectra above belong to a **box filter**? 1P
12. Which of the spectra above belong to a **Gaussian filter**? 1P
13. Which of the spectra above belong to a ideal **high-pass filter**? 1P
14. Which of the spectra above belong to a rotation symmetric 2D **sinc function** in spatial domain? 1P

Block IV

15. The **frequency domain** representation F, G of two signals f, g are stated below. 2P

F	0.2 - 0.8i	0.3 - 0.4i	-2 + 1i	3	-2 - 1i	0.3 + 0.4i	0.2 + 0.8i
G	-0.1 + 0.6i	0.2 - 0.2i	-5 + 2i	9	-5 - 2i	0.2 + 0.2i	-0.1 - 0.6i

A **correlation** of f and g results in which of the following spectra?

i)	0.46 + 0.2i	-0.02 - 0.14i	8 - 9i	27	8 + 9i	-0.02 + 0.14i	0.46 - 0.2i
ii)	-0.6 - 0.32i	-0.07 - 0.24i	3 - 4i	9	3 + 4i	-0.07 + 0.24i	-0.6 + 0.32i
iii)	-0.35 - 0.12i	0 - 0.08i	21 - 20i	81	21 + 20i	0 + 0.08i	-0.35 + 0.12i
iv)	-0.5 - 0.04i	0.14 - 0.02i	12 - 1i	27	12 + 1i	0.14 + 0.02i	-0.5 + 0.04i

16. The **ringing effect** in the context of digital image processing is 1P
 - i) caused by **homogeneous** image regions.
 - ii) caused by **discontinuities** in the frequency spectrum of a low-pass filter.
 - iii) caused by **discontinuities** in the frequency spectrum of a high-pass filter.
 - iv) caused by **discontinuities** of the filter in spatial domain.

17. In the following a, b are real-valued constants and s, f, g are continuous signals in time domain with the frequency representations S, F, G , respectively. A convolution is denoted by \otimes , \cdot means component-wise multiplication, and $*$ means complex conjugation. 1P

Which of the following **relations** are true?

i) $s = f + a \Leftrightarrow S = F + a$	ii) $s = af + bg \Leftrightarrow S = aF + bG$	iii) $f(t) \in \mathbb{R} \Rightarrow F(-\mu) = F(\mu)^*$	iv) $s = f \otimes g \Leftrightarrow S = F \cdot G$
--	---	---	---

Block V

18. The **amplitude spectrum** of a **one-dimensional degradation function (discrete, 7 elements)** is shown in Figure 2. Which of the following spectra belongs to the **clipped inverse filter** with a threshold value of $T=0.5$? 2P

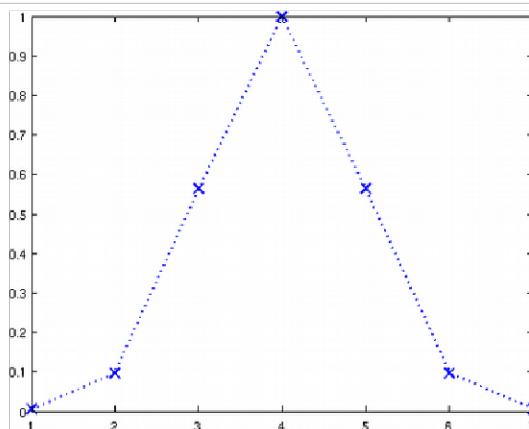
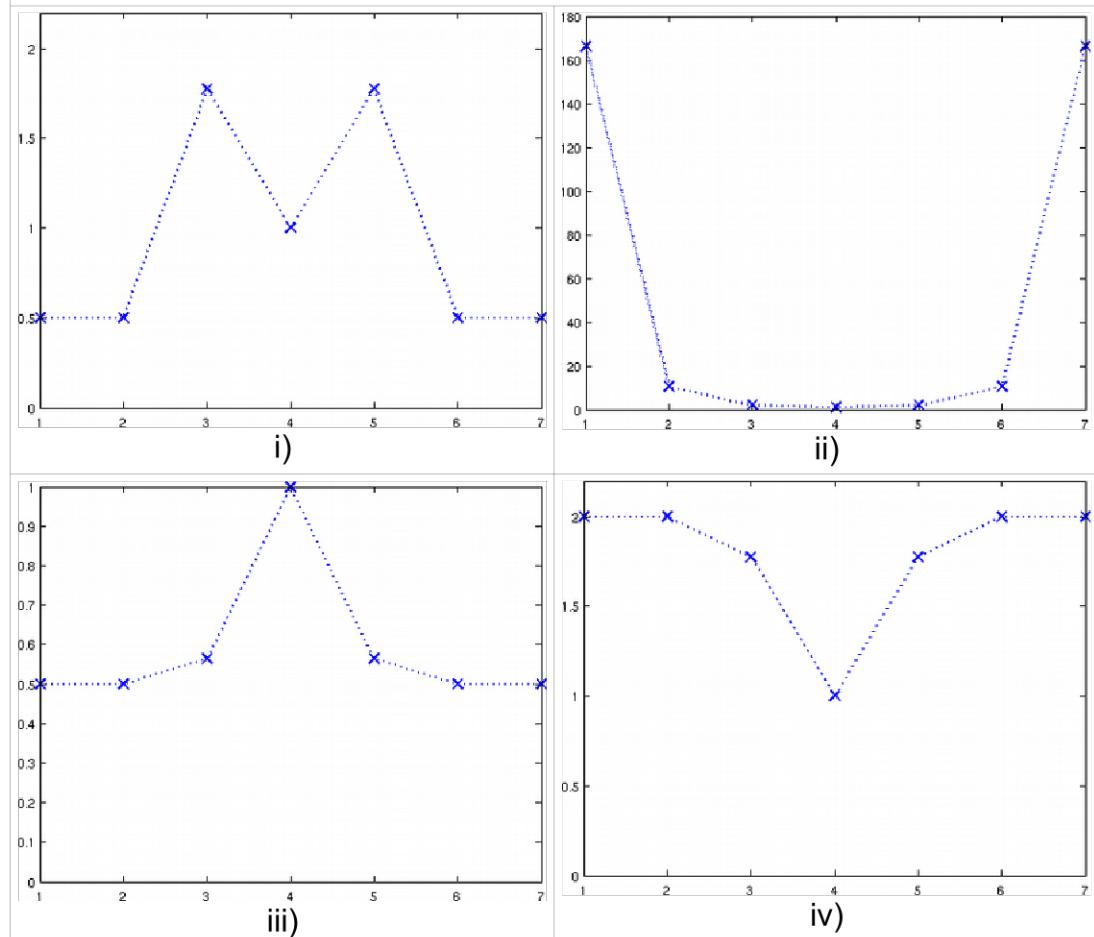



Figure 2

19. Assume that a measured signal s can be modelled as $s=h \otimes o + n$, where s and o are the measured and original signal, respectively, h is a linear shift-invariant filter which can be modelled as convolution \otimes , and n is a random noise term. Assuming the k -th component H_k of the spectrum H of h is $H_k=4-3i$, and $SNR=2$. What is the corresponding k -th element of the spectrum of the **Wiener Filter** M_k ? 2P

i) $M_k = \frac{4-3i}{5.25}$	ii) $M_k = \frac{4-3i}{25.25}$	iii) $M_k = \frac{4+3i}{5.25}$	iv) $M_k = \frac{4+3i}{25.25}$
------------------------------	--------------------------------	--------------------------------	--------------------------------

Block VI

20. The **optimal thresholding** method is initialized with $F_0=\{15, 15, 30, 64\}$ and $B_0=\{91, 91\}$. The **threshold** T_2 of the 2nd iteration is 3P

i) $T_2 = 51$	ii) $T_2 = 61$	iii) $T_2 = 53$	iv) $T_2 = 77.5$
---------------	----------------	-----------------	------------------

21. A color image is given in Lab color space. The information of the i -th pixel is given as L_p, a_p, b_p (denoting the corresponding color values) and x_p, y_p (denoting the spatial pixel positions). **SLIC** initializes the cluster centers c_i as 1P

i) $c_i = (L_p, a_p, b_p, x_p, y_p)$	ii) $c_i = (L_p, a_p, b_p)$	iii) $c_i = (x_p, y_p)$	iv) SLIC doesn't use clustering.
--------------------------------------	-----------------------------	-------------------------	----------------------------------

22. The internal energy of an **active contour** 1P

- i) controls the **elasticity** of the curve.
- ii) controls the **stiffness** of the curve.
- iii) ensures that the curve fits to the **image content**.
- iv) includes user-defined higher level **knowledge**.

23. Figure 3 shows a **weighted undirected graph** with four nodes (represented by circles, A-D) and six edges with corresponding weights. What is the value of the **Normalized Cut** that divides the given graph into the two subgraphs consisting of A,C and B,D? 3P

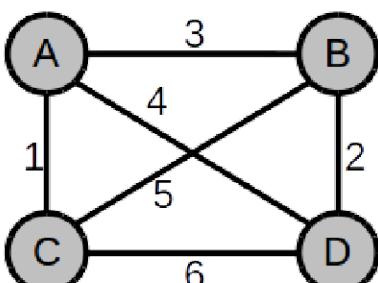


Figure 3

Figure 3 shows a **weighted undirected graph** with four nodes (represented by circles, A-D) and six edges with corresponding weights. What is the value of the **Normalized Cut** that divides the given graph into the two subgraphs consisting of A,C and B,D?

i) 18	ii) $180 / 220$	iii) $189 / 110$	iv) $180 / 200$
-------	-----------------	------------------	-----------------

Block VII

24. The **structure tensor** A_p of a pixel p in a homogeneous neighborhood N with a constant gray level value v_i of $v_i = 1$ for all $i \in N$ is 1P

i) $A_p = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	ii) $A_p = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	iii) $A_p = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	iv) $A_p = 1$
---	--	---	---------------

25. The **eigenvalues of a structure tensor** are $\lambda_1=10, \lambda_2=2$. The 1P corresponding image region most likely corresponds to

i) an homogeneous area. ii) an edge. iii) a corner. iv) a blob.

26. Given the eigenvalues above in Question 25., the **roundness** q of the 2P **Förstner point detector** is

i) $q = 5/3$ ii) $q = 5/9$ iii) $q = 5/36$ iv) $q = 20/3$

27. If there are two **dominant gradient orientations** in the neighborhood of a 1P keypoint candidate, **SIFT**

- i) creates **one keypoint** with the strongest of the two orientations.
- ii) creates **one keypoint** with the average of the two orientations.
- iii) creates **two keypoints** at the same position each with one of the two orientations.
- iv) creates **no keypoint** because it would be ambiguous.

28. **SURF** is method to detect and describe keypoints in images. Which of the 1P following statements is true with respect to the **detection part** of SURF?

- i) SURF detects keypoints based on the **Hessian matrix**.
- ii) SURF applies **integral images** to compute an approximation of the necessary image derivatives.
- iii) SURF scales the filter kernel instead of using an image **scale space**.
- iv) SURF is **slower** than SIFT.

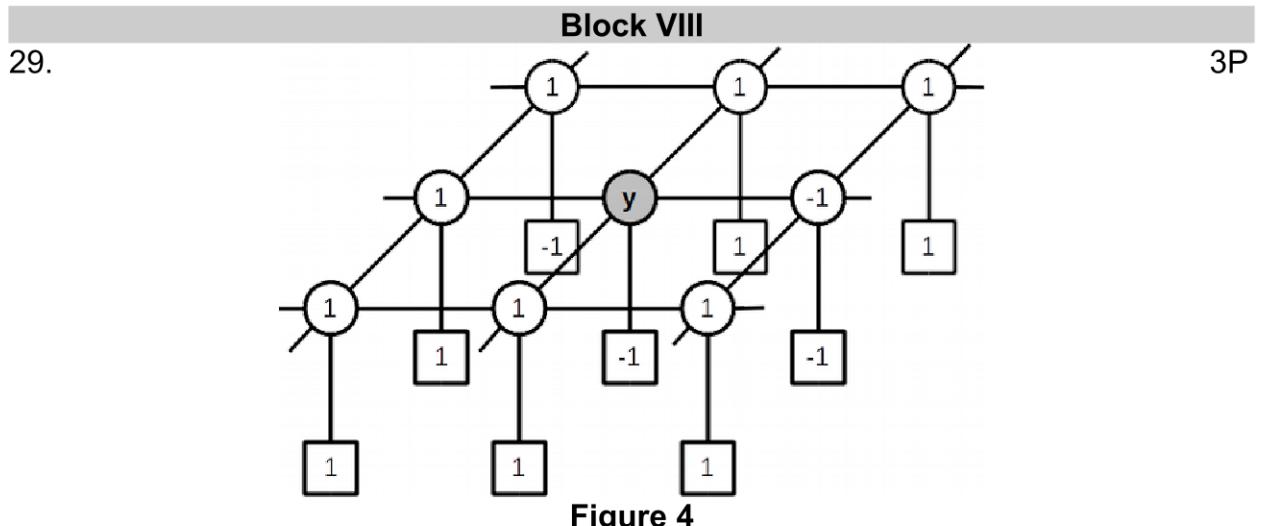
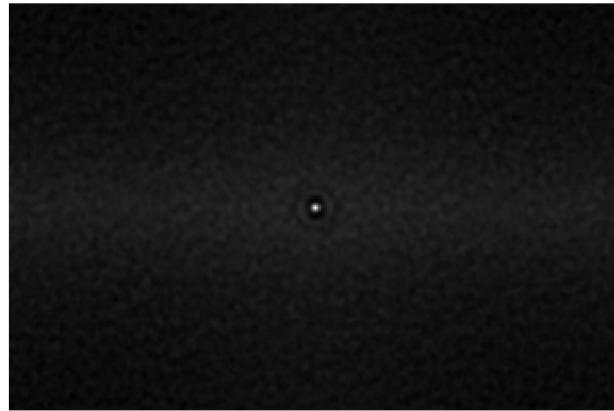


Figure 4 shows a **Markov Random Field** defined over a binary image (i.e. pixel values of -1 or 1), where **measurement nodes** x_i are represented as squares and **label nodes** y_i as circles. The **unary and pairwise potentials** are defined as below. What is the **energy of $y=1$** ?

$$\psi^U(y_i, x_i) = -2x_i y_i \quad \psi^P(y_i, y_j) = -3y_i y_j$$


i) 2 ii) -6 iii) -4 iv) -2

30. Morphological operators for binary images such as **opening** (\circ) and **closing** (\bullet) are defined for grayscale images, too. The **top-hat transform** g of a grayscale image f by using a structuring element b is given by 1P

i) $g = (f \circ b) \bullet b$	ii) $g = (f \bullet b) \circ b$	iii) $g = f - f \circ b$	iv) $g = f \bullet b - f$
--------------------------------	---------------------------------	--------------------------	---------------------------

31.

1P

Figure 5

The **autocorrelation texture description** in Figure 5 was computed from a given image. In relation to the image size, the corresponding texture is

i) coarse.	ii) fine.	iii) regular.	iv) random.
------------	-----------	---------------	-------------