

Final Examination
Digital Image Processing
Winter term 2017/18

Name:

Student ID number:

Auxiliary resources: none

A

February 21, 2018

DO NOT OPEN THIS EXAMINATION SHEET UNTIL YOU ARE TOLD TO DO SO!

Write your **name** and **student ID** in the corresponding places at the top of this page **now**.

Books, notes, dictionaries, own empty sheets of paper, and pocket calculators are **not allowed**.

Use only a pen. Everything written with a pencil will not be taken into account.

If you do not understand a question, please **ask**.

It will be to your advantage to read the entire examination before beginning to work.

The exam is in most parts a **multiple choice** test.

For each question there is at least **one and at most four** correct answers.

The number of points p for a single correct answer are stated next to the question.

Please note, that there is a **penalty of $-p/2$ points** for a wrong answer, while by giving no answer points are neither gained nor lost (i.e. no penalty for not giving an answer).

The minimal number of points for each question is 0 (i.e. no negative points for whole questions).

	Which of the following numbers is even?				2P
	i) 2	ii) 3	iii) 4	iv) 5	
Example 1			X (correct +2P)		Result: 2P
Example 2		X (incorrect: -1P)	X (correct +2P)		Result: 1P
Example 3	X (correct +2P)		X (correct +2P)		Result: 4P
Example 4		X (incorrect: -1P)			Result: 0P

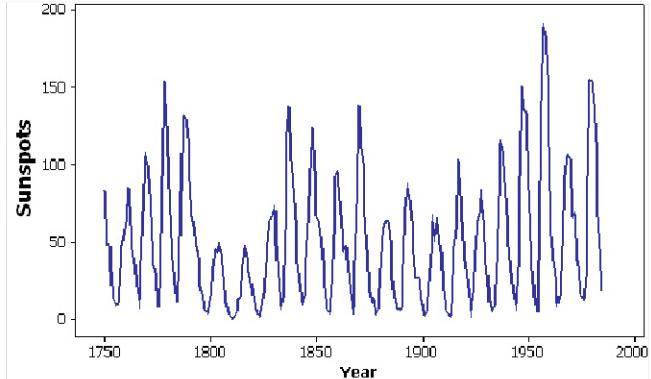
Notation:

Black = Gray level of 0

White = Gray level of 255

Lots of luck and do your best!

Please use this table to denote your answers by making a cross ("X") in the column corresponding to your answer. If you want to correct a falsely given answer, strike the line through and use the empty rows at the end of the table.


Total: 45 points

Block 1

1. In the following a single sample \mathbf{x} of four large datasets \mathbf{X} is given. 1P
Which of those is an example for **structured data**?

i)

ii)

"I find your lack of faith disturbing."

iii)

Age	Gender	Country	Income
32	female	German	32K

iv)

2. Which of the following statements about “**semantic segmentation**” is true? 1P

Semantic segmentation aims to ...

- i) ... group pixels that have a **similar texture**.
- ii) ... estimate the **location of objects** in an image.
- iii) ... group pixels that belong to the **same object**.
- iv) ... estimate **bounding boxes** around objects.

3. Which of the following statements about “**bottom-up processing**” is true? 1P

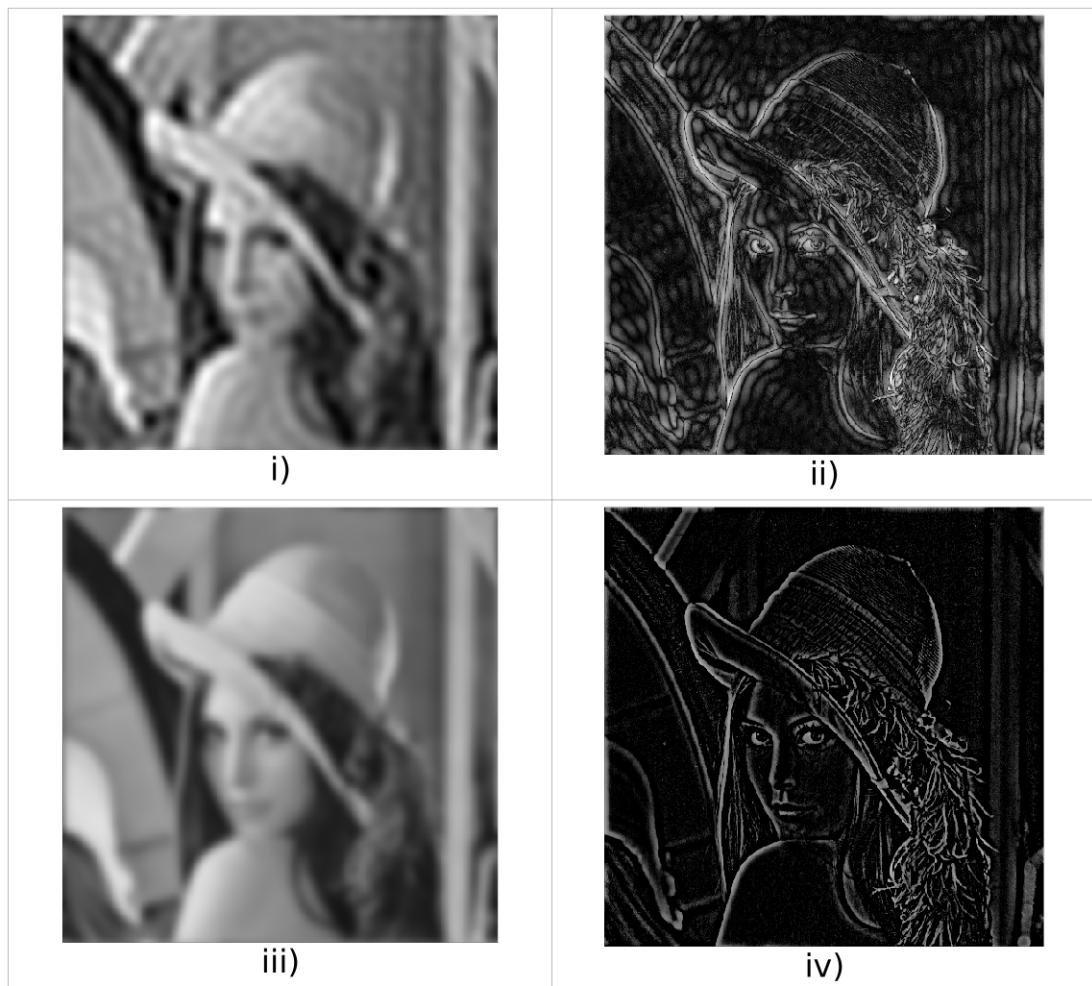
Bottom-up processing ...

- i) ... is **model driven**.
- ii) ... starts with **low-level image operations**.
- iii) ... is **data driven**.
- iv) ... **projects a model** into the image and performs a matching operation.

Block 2

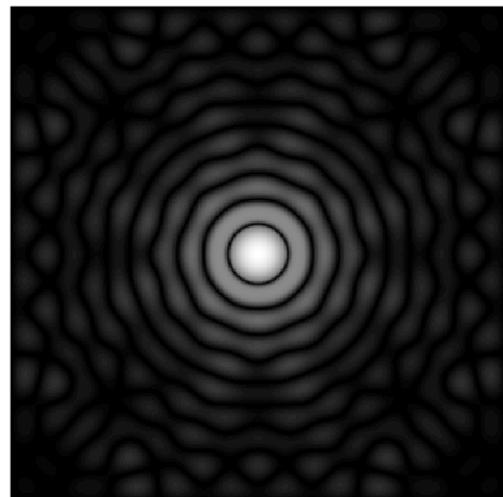
4. Given two images f, g of same size, which of the following statements is the **convolution theorem**? 2P

Note: FFT and IFFT denote the forward and inverse form of the Fourier Transformation, convolution is denoted by \otimes while \cdot means point-wise multiplication and * complex conjugation.

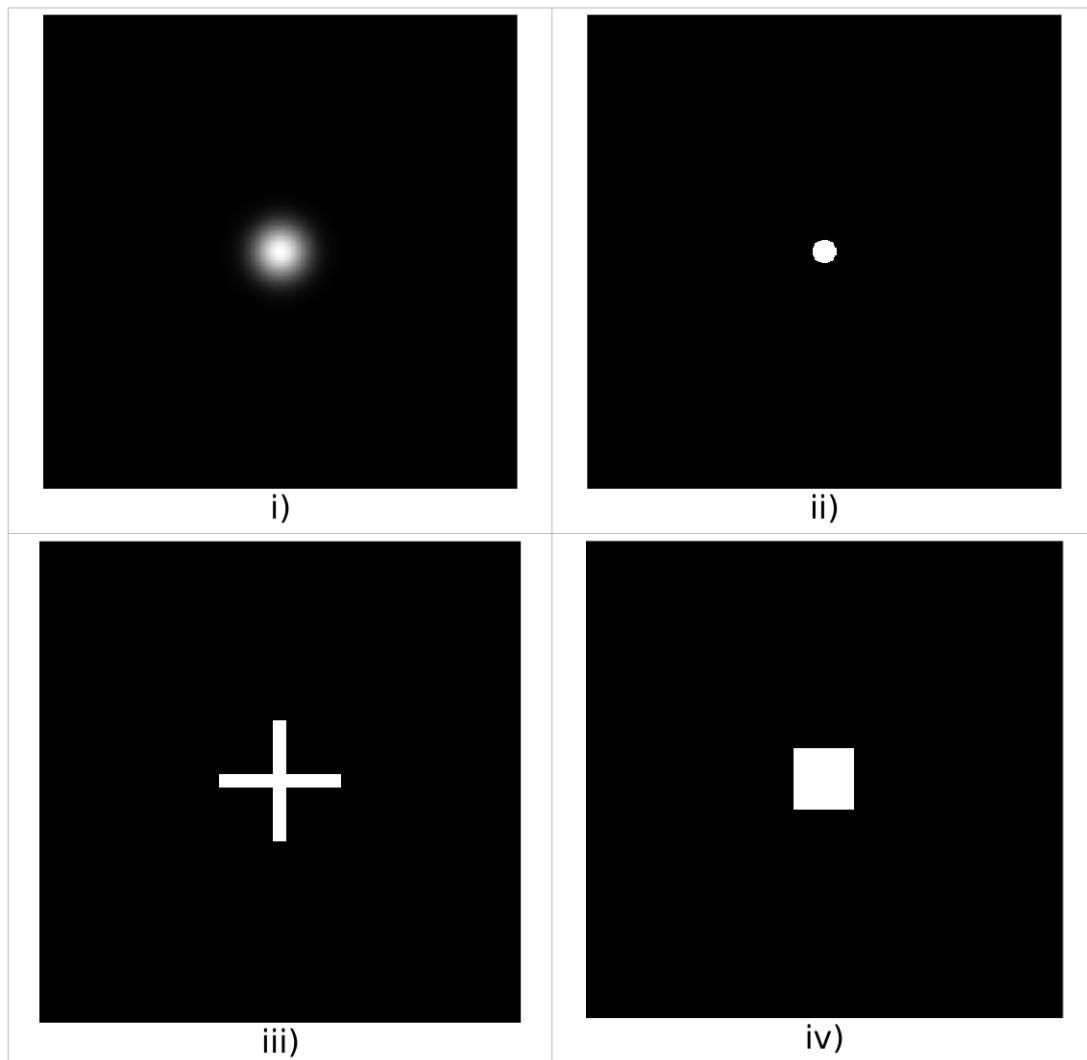

i) $(f \otimes g)(x) = \int f(\tau) \cdot g(x - \tau) d\tau$	ii) $f \otimes g = \text{IFFT}(\text{FFT}(f) \cdot \text{FFT}(g))$
iii) $f \cdot g = \text{IFFT}(\text{FFT}(f) \otimes \text{FFT}(g))$	iv) $f \otimes g = \text{IFFT}(\text{FFT}(f) \cdot \text{FFT}(g)^*)$

5.

1P

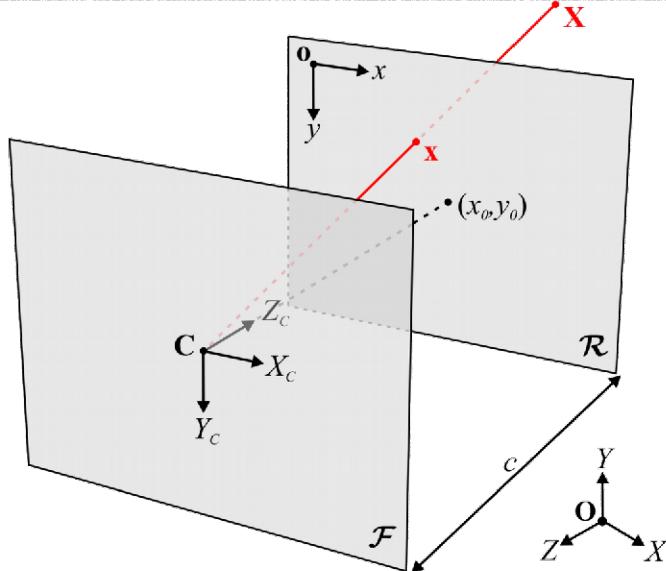


Which of the images below is the result of applying an **ideal high-pass filter** to the picture above?



6.

1P



The image above shows the magnitude of the **frequency spectrum** of which of the following images?

Block 3

7.

$$K = \begin{bmatrix} 8446 & 0 & 4344 \\ 0 & 8446 & 2896 \\ 0 & 0 & 1 \end{bmatrix}$$

The figure above illustrates a standard **pinhole camera** system. Please assign the correct names to the following variables as defined in the figure.

4P

This is not a multiple-choice question. Please use the table below.

C	
C	
(x_0, y_0)	
R	

8. The matrix above (next to the figure showing the camera system) states the **calibration matrix K** of a standard pinhole camera model. Please assign the correct values to the following variables as defined in the figure above. **This is not a multiple-choice question. Please use the table below.**

4P

c (in pixel)	
(x_0, y_0)	
Skew factor	
Aspect ratio	

9. Given a common optical camera, which of the following statements is a common assumption regarding the relationship between a true image f_T , the measured image f_M , and the **noise term** n ?

1P

- Image noise is **homogeneous**.
- The average of n over all image positions (x, y) is **zero**.
- Image noise is **additive**.
- $f_M(x, y) = f_T(x, y) \cdot n(x, y)$

Block 4

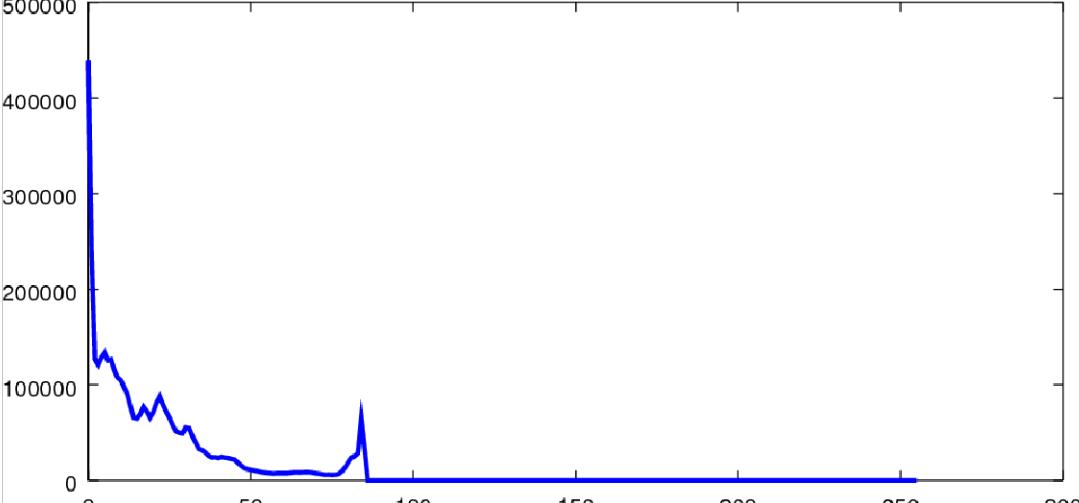
10. The magnitude of the Fourier spectrum H of a degradation filter h is given 2P as

$$|H| = [5, 20, 60, 120, 200, 250, 200, 120, 60, 20, 5]$$

Which of the following magnitudes of a spectrum Q belongs to the **clipped inverse filter** q (with a threshold $T = 30$) that can be used to restore the original signal if it was distorted by filter h .

- i) $|Q| = [1/5, 1/20, 1/60, 1/120, 1/200, 1/250, 1/200, 1/120, 1/60, 1/20, 1/5]$
- ii) $|Q| = [30, 30, 1/60, 1/120, 1/200, 1/250, 1/200, 1/120, 1/60, 30, 30]$
- iii) $|Q| = [1/30, 1/30, 1/60, 1/120, 1/200, 1/250, 1/200, 1/120, 1/60, 1/30, 1/30]$
- iv) $|Q| = [0, 0, 1/60, 1/120, 1/200, 1/250, 1/200, 1/120, 1/60, 0, 0]$

11. Which is the signal model that the **inverse filter** assumes (\otimes denotes convolution and s , o , h , and n denote the measured and original image, a filter and a noise term, respectively)? 1P


i) $s = h \otimes (o + n)$	ii) $s = h \otimes o + n$
iii) $s = (h \otimes o) \cdot n$	iv) $s = h \otimes o$

12. Which is the signal model that the **Wiener filter** assumes(same notation as above)? 1P

i) $s = h \otimes (o + n)$	ii) $s = h \otimes o + n$
iii) $s = (h \otimes o) \cdot n$	iv) $s = h \otimes o$

Block 5

13. 1P

The figure above shows the **grey-scale histogram** of an image.

Which of the following statements are true regarding this image?

- i) The image has **low contrast**.
- ii) The image is **large** (i.e. has more than 10 million pixel).
- iii) The image is **dark**.
- iv) The image has **strong salt-and-pepper noise**.

14. 1P

The figure above shows on the right the result of applying a **homogeneous point operation** $q=f(p)$ to the values p of the original image on the left. Which of the following operations was used?

i) $q=f(p)=\frac{\log_e(p+1)}{\log_e(256)} \cdot 255$	ii) $q=f(p)=\frac{p^2}{255}$
iii) $q=f(p)=p$	iv) $q=f(p)=255-p$

15.

109	100	104	106	109
109	109	107	103	107
105	105	103	109	100
108	109	102	107	102
102	104	102	108	106

3P

The matrix above denotes a small grey-scale image. Which of the following image matrices are the result of applying **linear grey-level stretching**?

255 0 113 170 255	255 0 116 172 255
255 255 198 85 198	255 255 200 87 200
142 142 85 255 0	144 144 87 255 0
227 255 57 198 57	228 255 59 200 59
57 113 57 227 170	59 116 59 228 172
i)	ii)
255 0 111 168 255	255 20 102 143 255
255 255 196 83 196	255 255 173 82 173
139 139 83 255 0	122 122 82 255 20
226 255 55 196 55	194 255 61 173 61
55 111 55 226 168	61 102 61 194 143
iii)	iv)

Block 6

16. Given an image f and the corresponding spatial first derivatives f_x, f_y 1P and second derivatives $f_{xx}, f_{xy}, f_{yx}, f_{yy}$, which of the following equations defines the **structure tensor** A ?

i)
$$A(x, y) = \sum_{(i, j) \in W} \begin{bmatrix} f_{xx}(i, j) & f_{xy}(i, j) \\ f_{yx}(i, j) & f_{yy}(i, j) \end{bmatrix}$$

ii)
$$A(x, y) = \begin{bmatrix} \sum_{(i, j) \in W} f_{xx}(i, j) & \sum_{(i, j) \in W} f_{xy}(i, j) \\ \sum_{(i, j) \in W} f_{yx}(i, j) & \sum_{(i, j) \in W} f_{yy}(i, j) \end{bmatrix}$$

iii)
$$A(x, y) = \begin{bmatrix} \sum_{(i, j) \in W} f_x(i, j)f_x(i, j) & \sum_{(i, j) \in W} f_x(i, j)f_y(i, j) \\ \sum_{(i, j) \in W} f_y(i, j)f_x(i, j) & \sum_{(i, j) \in W} f_y(i, j)f_y(i, j) \end{bmatrix}$$

iv)
$$A(x, y) = \begin{bmatrix} \sum_{(i, j) \in W} f(x, j)f(x, j) & \sum_{(i, j) \in W} f(x, j)f(i, y) \\ \sum_{(i, j) \in W} f(x, j)f(i, y) & \sum_{(i, j) \in W} f(i, y)f(i, y) \end{bmatrix}$$

17. If the **structure tensor** is computed for a pixel on an image **edge**, which of 1P the following statements is true?

- i) The **determinant** of the tensor is close to zero.
- ii) **All Eigenvalues** of the tensor are close to zero.
- iii) Only **one Eigenvalue** of the tensor is close to zero.
- iv) The tensor has **full rank**.

18. Given the structure tensor A below, which is the correct value of the weight 3P value of the **Förstner operator**?

$$A = \begin{bmatrix} 5 & 1 \\ 1 & 5 \end{bmatrix}$$

i) 0.96	ii) 5 / 12
iii) 2.4	iv) 20

Block 7

19. 2P

5	20	55			
6	14	60			
8	22	50			

Transform the image given on the left side of the figure above into its **integral image** representation.

This is not a multiple-choice question. Please use the empty image matrix on the right.

20. For which of the following filters can the computation time of their application 1P be decreased by using **integral images**?

0	0	0	0	0	0	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	1	1	1	1	1	0
0	0	0	0	0	0	0

i)

0	0	0	0	0	0	0
0	0	1	2	1	0	0
0	1	6	10	6	1	0
0	2	10	16	10	2	0
0	1	6	10	6	1	0
0	0	1	2	1	0	0
0	0	0	0	0	0	0

ii)

0	0	0	0	0	0	0
0	-1	-1	-1	-1	-1	0
0	-1	4	4	4	-1	0
0	-1	4	4	4	-1	0
0	-1	4	4	4	-1	0
0	-1	-1	-1	-1	-1	0
0	0	0	0	0	0	0

iii)

0	0	0	0	0	0	0
0	1	1	0	-1	-1	0
0	1	1	0	-1	-1	0
0	1	1	0	-1	-1	0
0	1	1	0	-1	-1	0
0	1	1	0	-1	-1	0
0	0	0	0	0	0	0

iv)

21. Based on the idea of **separable filters**, which of the following filter pairs is 2P the correct representation of the filter h given below?

$$h = \begin{bmatrix} 9 & 15 & 9 \\ 15 & 25 & 15 \\ 9 & 15 & 9 \end{bmatrix}$$

i) $\left([3 \ 5 \ 3], [3 \ 5 \ 3]^T \right)$	ii) $\left([9 \ 15 \ 9], [15 \ 25 \ 15]^T \right)$
iii) $\left([9 \ 15 \ 9], [15 \ 25 \ 15] \right)$	iv) $\left([3 \ 5 \ 3], [3 \ 5 \ 3] \right)$

Block 8

22. 2P

83	127	109	69	110	108	66
115	108	61	80	135	108	52
104	104	130	93	92	145	61
50	132	51	74	93	129	53
81	83	148	97	123	93	57
65	138	139	78	53	97	60
83	57	76	128	117	121	140

-1	0	1
-2	0	2
-1	0	1

Which of the matrices below are the 3×3 central part of the resulting image when a **median filter** is applied to the image on the left side above?
 Note: The corresponding central part is marked in **grey**.

93	92	93	93	90	105
97	93	93	93	101	104
97	93	93	93	104	93
i)			ii)		
99	92	105	97	108	93
93	87	101	93	97	93
113	99	99	93	97	93
iii)			iv)		

23. If an image operator T can be implemented as **convolution** of an image with a filter kernel, which of the following statements are correct? 1P

Note: f, g are images of same size, a is a constant scalar value, and ∇ is the derivative operator.

i) $T(\nabla f) = \nabla T(f)$	ii) $T(a \cdot f) = a \cdot T(f)$
iii) $T(f+g) = T(f) + T(g)$	iv) $T(f \cdot g) = T(f) \cdot T(g)$

24. Which of the following images is the result of **convolving the image** on the left side of the figure above with the filter stated on the right side? 4P

<table border="1"> <tr><td>-108</td><td>40</td><td>187</td></tr> <tr><td>-113</td><td>21</td><td>158</td></tr> <tr><td>-90</td><td>-94</td><td>66</td></tr> </table>	-108	40	187	-113	21	158	-90	-94	66	<table border="1"> <tr><td>108</td><td>-40</td><td>-187</td></tr> <tr><td>113</td><td>-21</td><td>-158</td></tr> <tr><td>90</td><td>94</td><td>-66</td></tr> </table>	108	-40	-187	113	-21	-158	90	94	-66
-108	40	187																	
-113	21	158																	
-90	-94	66																	
108	-40	-187																	
113	-21	-158																	
90	94	-66																	
i)	ii)																		
<table border="1"> <tr><td>-2</td><td>-64</td><td>-69</td></tr> <tr><td>19</td><td>57</td><td>14</td></tr> <tr><td>186</td><td>56</td><td>-108</td></tr> </table>	-2	-64	-69	19	57	14	186	56	-108	<table border="1"> <tr><td>211</td><td>-4</td><td>-98</td></tr> <tr><td>-280</td><td>-38</td><td>-46</td></tr> <tr><td>222</td><td>-35</td><td>156</td></tr> </table>	211	-4	-98	-280	-38	-46	222	-35	156
-2	-64	-69																	
19	57	14																	
186	56	-108																	
211	-4	-98																	
-280	-38	-46																	
222	-35	156																	
iii)	iv)																		