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Question 1 (10 points)
Consider a max-plus matrix A, whose precedence graph G(A) is shown in Figure 1.
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Figure 1: Precedence graph G(A) for Question 1.

The following powers of matrix A are given:

A =




4 3 ε 2 ε ε
3 4 ε ε ε ε
ε 11 ε 6 6 ε
6 ε ε ε e ε
ε ε ε ε 3 5
ε ε 1 ε 1 ε



, A2 =




8 7 ε 6 2 ε
7 8 ε 5 ε ε
14 15 ε ε 9 11
10 9 ε 8 3 5
ε ε 6 ε 6 8
ε 12 ε 7 7 6



, A3 =




12 11 ε 10 6 7
11 12 ε 9 5 ε
18 19 12 16 12 14
14 13 6 12 8 8
ε 17 9 12 12 11
15 16 7 ε 10 12



,

A4 =




16 15 8 14 10 11
15 16 ε 13 9 10
22 23 15 20 18 17
18 17 9 16 12 13
20 21 12 15 15 17
19 20 13 17 13 15



, A5 =




20 19 12 18 14 15
19 20 11 17 13 14
26 27 18 24 21 23
22 21 14 20 16 17
24 25 18 22 18 20
23 24 16 21 19 18



, A6 =




24 23 16 22 18 19
23 24 15 21 17 18
30 31 24 28 24 26
26 25 18 24 20 21
28 29 21 26 24 23
27 28 19 25 22 24



.
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a) (2 points)
Determine an eigenvalue λ of A. Is this eigenvalue unique? Justify your answer.

b) (2 points)
Provide the critical graph of A and indicate its maximal strongly connected (m.s.c.) subgraphs.

c) (3 points)
Let

Q+ = Q⊗Q∗ =




e −1 −8 −2 −6 −5
−1 e −9 −3 −7 −6
6 7 e 4 2 3
2 1 −6 e −4 −3
4 5 −2 2 e 1
3 4 −3 1 −1 e



, where Q = inv⊗(λ)⊗A .

Consider the vector v = [5 6 13 7 11 10]�. Determine two linearly independent eigenvectors of A,
say, ξ1 and ξ2, for which �α1,α2 ∈ R such that v = α1ξ1 ⊕ α2ξ2, where R = R ∪ {−∞}.

d) (3 points)
Let a system be represented by a timed event graph whose transitions’ earliest possible firing times can be
described by x(k + 1) = Ax(k), where x(k) is the vector of the k-th firing instants and A is the matrix
provided above. Consider the following statement:

“Regardless of the value of x(1), the system will eventually exhibit a behavior.”

Among the following options, choose the one (and only one) that correctly completes the sentence, and
briefly justify your answer:

• nonperiodic;

• transient;

• 1-periodic;

• 2-periodic;

• 3-periodic.

Question 2 (8 points)
Consider the following languages defined over the alphabet Σ = {λ,β}:

L1 = {s ∈ Σ∗ | � t,u ∈ Σ∗ such that s = λtβuβ} ;
L2 = {s ∈ Σ∗ | s contains the sequence βλ at least twice and does not contain the sequence βλβ} .

a) (4 points)
Provide a nonblocking deterministic finite automaton A1 such that Lm(A1) = L1.

b) (4 points)
Provide a nonblocking deterministic finite automaton A2 such that Lm(A2) = L2.
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Question 3 (10 points)
Consider a robot modeled by the automaton R shown in Figure 2, defined over the alphabet Σ = {a, a�, b, b�, c, c�}.
From its initial position (location I) it can visit three locations, A, B, and C; additionally, it can also visit location B
directly from locations A or C. Events a, b, and c represent the arrival of the robot at locations A, B, and C, whereas
a�, b�, and c� represent the arrival back at I when coming from A, B, and C, respectively.

a

a�c

c�

bb�

bb

Figure 2: Automaton R modeling the robot for Question 3.

a) (3 points)
Explain, in a short sentence, the meaning of the specification for R represented by the automaton �Aspec in
Figure 3, defined over the alphabet Σspec = {a, b, c}.

�Aspec:
b

a,c

a,c

Figure 3: Automaton �Aspec representing a specification for the robot of Question 3.

b) (4 points)
Provide a deterministic finite automaton that represents the following specification:

For every time the robot goes from location A directly to location B, it can only visit location A again after
visiting location C at least once.

Indicate also the alphabet over which your automaton is defined.

c) (3 points)
Assume that the sets of controllable and uncontrollable events of R are given by Σc = {a, b, c} and Σuc =
{a�, b�, c�}, respectively. Is the language K = {ε, abb�, cc�, bb�cbb�} controllable with respect to the language
L(R) generated by R? Justify your answer.
(Hint: you do not need to explicitly construct the language L(R).)

Question 4 (4 points)
Obtain the parallel composition of automata A1 and A2 shown in Figure 4, defined over alphabets Σ1 = {α,β, δ}
and Σ2 = {α,β, γ}, respectively.

A1:
β

α

δ
A2:

β α

γ

α

β

Figure 4: Automata A1 and A2 for Question 4.
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Question 5 (8 points)
Let the automaton Ap in Figure 5 (left-hand side) model the behavior of a plant to be controlled, defined over the
alphabet of events Σ = {a,b,c,d}. Assume that events a and c are controllable, whereas b and d are uncontrollable.
A specification for the system is represented by a certain automaton �Aspec (not explicitly provided); the automaton
AK = Ap � �Aspec in Figure 5 (right-hand side) is the result of the parallel composition of Ap with �Aspec. Provide
an automaton realization for the least restrictive (and nonblocking) supervisor that enforces the given specification
on the plant Ap.

Ap:
a d

c

b

b c

b

c
a

c

b

d

a

AK = Ap � �Aspec:
a d

c

b

b
d

b

c
a

c

d

Figure 5: Automata models for Question 5.
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