Foundations of Stochastic Processes

Oral exam 2023

Task 1: Markov Chains

A tourist moves randomly in a town for 900 hours and switches position every hour. The "map" is shown below. The connection between point 4 and 5 is a bridge.
a) How much time (in average) does he spend in place 9?
b) How often (averagely) does he cross the bridge in direction left-right and how often in direction right-left?
a) $n_{\text {odges }}(A)=2 \quad \sum_{i=1}^{7} n_{\text {elyes }}(i)=9$

1 2 pess. t 6 to $A \quad 2.9$ pess to go ampuhere

$$
\begin{aligned}
& \rightarrow P^{2} P\left(\text { ugcingtc } A^{\prime \prime}\right)=\frac{2}{2 \cdot 9}=\frac{1}{9} \Rightarrow E\left[t_{A}\right]=\frac{900}{9}=100 \\
& x
\end{aligned}
$$

b)

$$
\begin{gathered}
X_{P} \in \mathbb{P}\left(x_{n}=X i \mid x_{n-1}=j, \ldots, x_{0}=k\right) \\
=P\left(x_{n}=i \mid x_{n-1}=j\right)
\end{gathered}
$$

$$
\begin{gathered}
\left(\pi_{5} p_{54}=\pi_{4} p_{45}\right) \\
n_{5 \rightarrow 4}=\pi_{5} \cdot p\left(x_{n}=4 \mid x_{n-1}=5\right)=\frac{1}{3} \pi_{5} \\
n_{n \rightarrow 5}=\pi_{4} \cdot p\left(x_{n}=5 \mid x_{n-1}=4\right)=\frac{1}{3} \pi_{4}
\end{gathered}
$$

a)

$$
\begin{aligned}
& \pi_{A}=\frac{n_{\text {edges } A}}{2 n_{\text {eapostat }}}=\frac{1}{9} \\
& \pi_{u}=\frac{3}{2 \cdot 9}=\frac{1}{6} \\
& \pi_{5}=\frac{3}{2 \cdot 9}=\frac{1}{6}
\end{aligned}
$$

X and Z are independent random variables with mean zero and variance \sigma_\{x\}^2 resp.
\backslash sigma_\{z\}^2. The values Y and W are being observed:

- $\quad Y=a X+Z$
- $\quad W=b X+c Z$
(a,b,c constant)
a) Find the optimal estimator for X.
b) Find an expression for the minimum mean square error.

