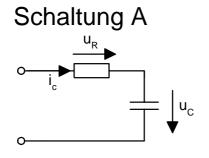


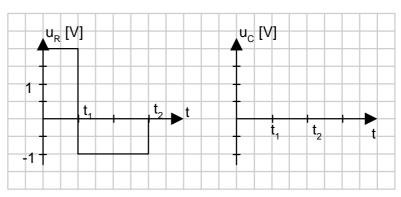
3. Klausur Grundlagen der Elektrotechnik I-A 11. Februar 2002

Name:	
Vorname:	
MatrNr.:	

Bitte den Laborbeteuer ankreuzen		
Reyk Brandalik	Björn Eissing	Dirk Freyer
Karsten Gänger	Sandro Jatta	Christian Jung
Marc Löbbers	Valerij Matrose	Nico Mock
Jörg Panzer	Stephan Rein	Jörg Schröder
Markus Wortmann	Uzmee Bazarsuren	Heik Hellmich
Dietmar Jung	Sven Tschirley	Wiederholer

Bearbeitungszeit: 90 Minuten

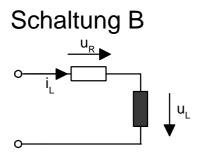

- Trennen Sie den Aufgabensatz nicht auf.
- Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier. Lösungen, die auf anderem Papier geschrieben werden, können nicht gewertet werden. Schreiben Sie Ihre Lösung auch auf die Rückseiten der Blätter! Weiteres Papier kann bei den Tutoren angefordert werden.
 - Schreiben Sie deutlich! Doppelte, unleserliche oder mehrdeutige Lösungen können nicht gewertet werden.
 - Schreiben Sie nicht mit Bleistift!
 - Schreiben Sie nur in blau oder schwarz!

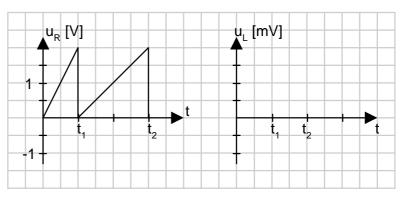

A1	A2	A3	A4	Summe

1. Aufgabe (5 Punkte): Zeitlicher Verlauf der Spannung an Kondensator und Spule

1.1. Kondensatorspannung (2,5 Punkte)

Gegeben ist folgendes Schaltbild und die über dem Widerstand R gemessene Spannung u_R .

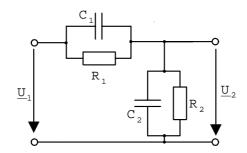



$$R=1k\Omega$$
 , $C=100nF$, $t_1=1ms$, $t_2=3ms$, $u_C(t=0)=0$

Berechnen Sie den Verlauf der Kondensatorspannung $u_C(t)$ für Schaltung A und zeichnen Sie die Spannung in das Diagramm ein!

1.2. Spannung über der Induktivität (2,5 Punkte)

Gegeben ist folgendes Schaltbild und die über dem Widerstand R gemessene Spannung u_R .


$$R=1k\Omega$$
 , $L=10mH$, $t_1=1ms$, $t_2=3ms$

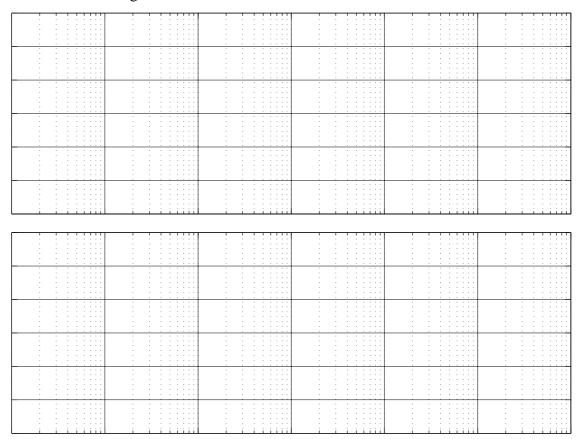
Berechnen Sie den Verlauf der Spannung über der Induktivität $u_L(t)$ (Schaltung B) und zeichnen Sie die Spannung in das Diagramm ein!

2. Aufgabe (5 Punkte): Übertragungsfunktion und Bodediagramm

2.1. Übertragungsfunktion (2 Punkte)

Gegeben ist folgende Schaltung:

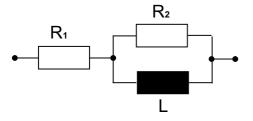
Bestimmen Sie die Übertragungsfunktion $\underline{V}(\omega)$ der Schaltung in Normalform!


11. Februar 2	11 51 2002	Name:	 Δ2
	11. Februar 2002	MatrNr.	

2.2. RC-Hochpass (1,5 Punkte)

Zeichnen Sie das Schaltbild eines RC-Hochpasses (bestehend aus 2 Bauelementen) und bestimmen Sie dessen Übertragungsfunktion in Normalform!

2.3. Bodediagramm des RC-Hochpasses (1,5 Punkte)


Zeichnen Sie qualitativ das Bodediagramm (asymptotisch) des RC-Hochpasses und beschriften Sie die Achsen der Diagramme!

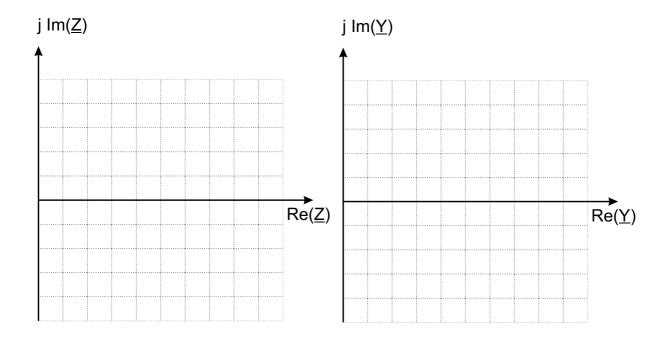
3. Aufgabe (5 Punkte): Ortskurve

Gegeben ist die folgende Schaltung

$$R_1=50\Omega$$
 , $R_2=100\Omega$, $L=1mH$

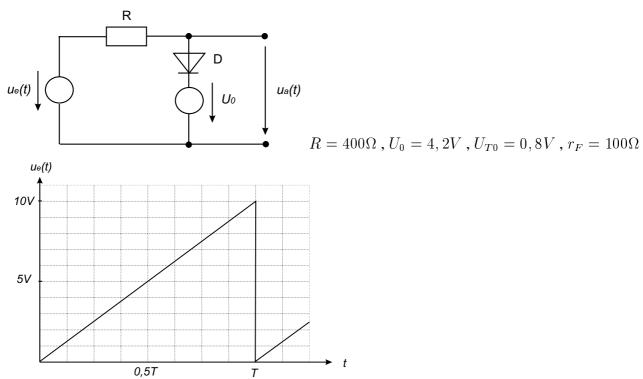
3.1. Impedanz einer Parallelschaltung (2 Punkte)

Bestimmen Sie allgemein die Impedanz $\underline{Z}(\omega)$. Berechnen Sie den komplexen Widerstand für die folgende Frequenzen $\omega_1=10^5s^{-1}$ in der Form $\underline{Z}=A+jB$. Welcher Wert ergibt sich für den Grenzübergang $\omega\to\infty$.


Name:	 Δ3
MatrNr.	

3.2. Ortskurve von <u>Z</u> (2 Punkte)

Zeichnen Sie quantitativ Ortskurve von $\underline{Z}(\omega)$ und kennzeichnen Sie die Punkte $\underline{Z}(\omega=0)$, $\underline{Z}(\omega_1)$ und $\underline{Z}(\omega\to\infty)$. Achsenbeschriftungen nicht vergessen!


3.3. Ortskurve von <u>Y</u> (1 Punkt)

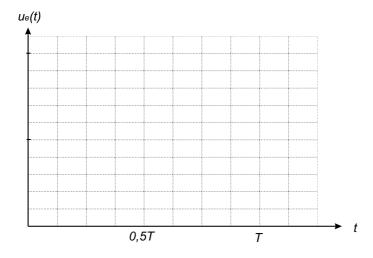
Zeichnen Sie qualitativ die Orstkurve $\underline{Y}(\omega)$ und kennzeichnen Sie die Punkte $\underline{Y}(\omega=0)$, $\underline{Y}(\omega_1)$ und $\underline{Y}(\omega\to\infty)$.

4. Aufgabe (5 Punkte): Dioden

Das folgende Netzwerk wird von einer Sägezahn-Spannung $u_{e}(t)$ gespeist:

4.1. Ersatzschaltbild (1 Punkt)

Zeichnen Sie das Netzwerk unter Verwendung des Ersatzschaltbildes der Diode (Hinweis $r_R \to \infty$).


Name:	
MatrNr.	

4.2. Diodenstrom und Ausgangsspannung (2,5 Punkte)

Geben Sie die Bedingung an, unter der die Diode leitet. Geben Sie die Bestimmungsgleichungen für den Diodenstrom und die Ausgangsspannung an.

4.3. Zeitverlauf der Ausgangsspannung (1,5 Punkte)

Berechnen Sie für die gegebene Eingangsspannung $u_e(t)$ die Ausgangsspannung $u_a(t)$ für die Zeitpunkte t=0,5T und t=T. Zeichnen Sie den zeitlichen Verlauf der Ausgangsspannung. Achsenbeschriftungen nicht vergessen!

Name:	
MatrNr.	

Name:	
MatrNr.	

Name:	
MatrNr.	