1. Klausur

Grundlagen der Elektrotechnik I-B

25. Mai 2004

Name:	• • • • • • • • • • • • • • • • • • • •	
Vorname:		,
MatrNr.:		

Bitte den Laborbeteuer ankreuzen						
Björn Eissing	Amra Anneck	Christian Jung				
Andreas Schulz	Jörg Schröder	Steffen Rohner				
Roman Möckel	Boris Jõesaar	Andreas Krutz				
Dietmar Jung	Ghislain Moulil Sil	Sascha Laue				
Matthias Milde	Patrick Ndjaboue	Daniel Schlüter				
Wiederholer	sonstiges	nicht sicher				

Bearbeitungszeit: 135 Minuten

- Trennen Sie den Aufgabensatz nicht auf.
- Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier.
 Lösungen, die auf anderem Papier geschrieben werden, können nicht gewertet werden. Weiteres Papier kann bei den Tutoren angefordert werden.
- Notieren Sie bei der Aufgabe einen Hinweis, wenn die Lösung auf einem Extrablatt fortgesetzt wird
- Schreiben Sie deutlich! Doppelte, unleserliche oder mehrdeutige Lösungen können nicht gewertet werden.
- Schreiben Sie nicht mit Bleistift!
- Schreiben Sie nur in blau oder schwarz!

A 1	A2	A3	A4	A5	A6	Summe

1. Aufgabe (5 Punkte): Fragen aus verschiedenen Gebieten

Beantworten Sie die folgenden Fragen:

1.1. Plattenkondensator (0,5 Punkte)

Nach welcher Formel errechnet sich die Kapazität eines Plattenkondensators?

1.2. Energie im Kondensator (0,5 Punkte)

Nach welcher Formel errechnet sich die Energie, die in einem Kondensator der Kapazität C gespeichert ist, wenn er auf eine Spannung U aufgeladen ist?

1.3. Differentieller Widerstand (0,5 Punkte)

Was ist ein differentieller Widerstand?

1.4. Schichtaufbau (1 Punkt)

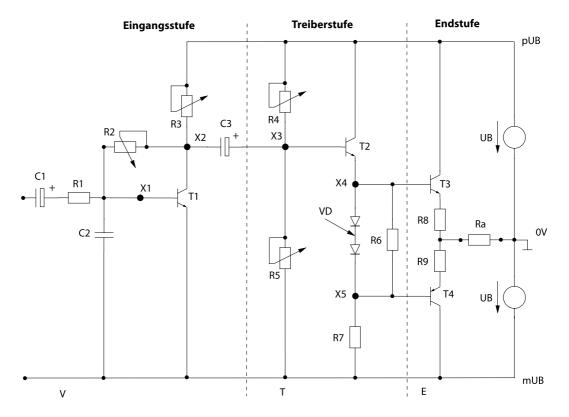
Skizzieren Sie den inneren Aufbau eines **PNP**-Transistors und kennzeichnen Sie die Anschlüsse von Basis, Kollektor und Emitter.

1.5. Transistorgrundschaltung (0,5 Punkte)

Skizzieren Sie einen npn-Transisitor in Emitterschaltung mit Spannungsgegenkopplung. Machen Sie Ein- und Ausgangsspannungen sowie die Versorungsspannung kenntlich.

1.6. Stromverstärkung (0,5 Punkte)

Wie beschreibt man die Stromverstärkung eines bipolaren Transistors?


1.7. Ersatzschaltbild (0,5 Punkte)

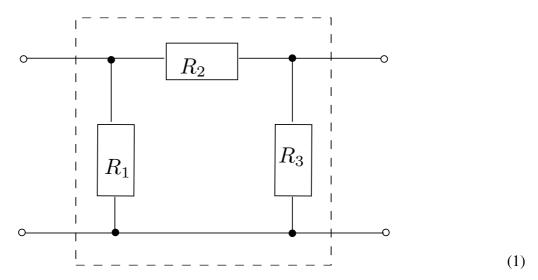
Zeichnen Sie das Wechselspannungsersatzschaltbild des Transistors (Kleinsignalverhalten).

1.8. Mehrstufiger Verstärker (1,5 Punkte)

Sie haben im Unterricht einen mehrstufigen Verstärker für Audiosignale kennen gelernt. Den Schaltplan des Verstärkers finden Sie in der folgenden Abbildung:

Beschreiben Sie die Aufgaben der einzelnen Stufen des Verstärkers:

• Eingangsstufe


• Treiberstufe

• Endstufe

2. Aufgabe (5 Punkte): H-Parameter

Gegeben ist ein passiver Vierpol:

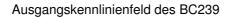
2.1. Strom- und Spannungspfeile, h-Parameter (1 Punkt)

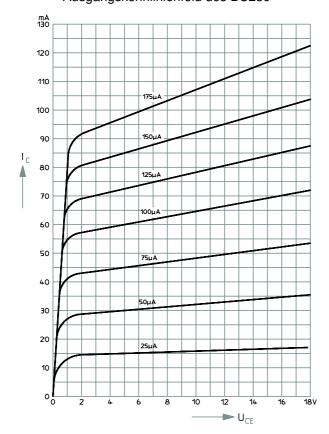
Zeichnen Sie die Spannungs- und Strompfeile für i_1, i_2, u_1 , und u_2 gemäß der eingeführten Vierpoltheorie ein, und geben Sie die allgemeinen h-Parameter-Gleichungen für Vierpole mit den dazugehörigen Bedingungen an.

2.2. Netzwerk berechnen (4 Punkte)

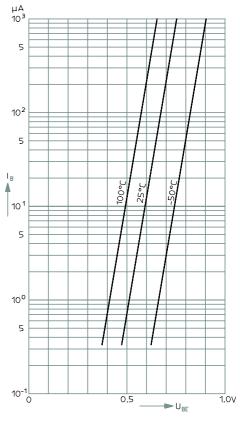

Berechnen Sie die Werte der Widerstände R_1,R_2,R_3 und den h-Parameter $h_{21}.$

$$h_{11} = \frac{4}{3}\Omega, h_{12} = \frac{1}{3}, h_{22} = \frac{1}{3}\frac{1}{\Omega}$$




3. Aufgabe (5 Punkte): Transistorschaltung

Gegeben ist die folgende Verstärkerschaltung. Die dazugehörige Eingangskennlinie und das Ausgangskennlinienfeld des verwendeten Transistors sind unten angegeben.



Ī	$I_{\rm C}$ = 30 mA	$I_{R2} = 10^{\circ} I_{B}$	$U_{\rm B}$ = 12 V
	B = 600	$P_{\text{tot}} = 300 \text{ mW}$	$U_{RE} = 1 \text{ V}$

Eingangskennlinien des BC239

Hinweis: Die Umgebungstemperatur beträgt -50°C.

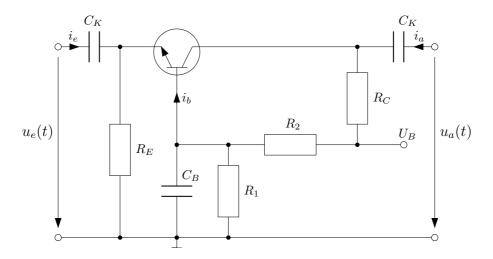
3.1. Arbeitspunkt (1 Punkt)

Bestimmen Sie den Arbeitspunkt A_1 und tragen Sie diesen und die Arbeitsgerade in das vorgegebene Ausgangskennlinienfeld ein. Gemäß der Tabelle fließt im Arbeitspunkt ein Strom $I_C=30\ mA$.

3.2. Dimensionierung R_C und R_E (1 Punkt)

Berechnen Sie die Widerstände R_C und R_E für den Arbeitspunkt A_1 , wenn über den Widerstand R_E eine Spannung von 1V abfallen soll.

3.3. Dimensionierung \mathcal{R}_1 und \mathcal{R}_2 (1 Punkt)


Dimensionieren Sie R_1 und R_2 so, dass die Bedingung $I_{R2}=10\cdot I_B$ erfüllt ist.

3.4. Verlustleistung (2 Punkte)

Zeichnen Sie die Verlustleistungshyperbel in das Ausgangskennlinienfeld ein. Berechnen Sie dazu mindestens 4 Stützpunkte. Berechnen Sie die umgesetzte Leistung im Arbeitspunkt A_1 .

4. Aufgabe (5 Punkte): Wechselstromersatzschaltbild

Gegeben ist die folgende Schaltung:

4.1. Schaltung erkennen (0,5 Punkte)

Um was was für eine Transistorschaltung handelt es sich?

4.2. Wechselstromersatzschaltbild (1,5 Punkte)

Zeichnen Sie das vollständige Wechselstromersatzschaltbild unter der Annahme $C_K = C_B \neq \infty$. Vergessen Sie nicht die Ströme und Spannungen einzuzeichnen, sowie die Elemente des Ersatzschaltbilds zu benennen.

4.3. Vereinfachung des Wechselstromersatzschaltbilds (1 Punkt)

Vereinfachen Sie das in der vorherigen Teilaufgabe gewonnene Ersatzschaltbild unter der Voraussetzung, dass:

- $h_{12} = h_{22} = 0$
- $C_K \to \infty$
- $C_B \rightarrow 0$

und vergessen Sie nicht die Bauelemente zu benennen, sowie die Spannungen und Ströme einzuzeichnen.

4.4. Spannungs- und Stromgleichungen (1 Punkt)

Stellen Sie für das **vereinfachte** Wechselstromersatzschaltbild die Knotengleichung für den Eingangsstrom i_e , sowie die Maschengleichungen für die Ein- und Ausgangsspannung auf.

4.5. Berechnungen (1 Punkt)

Berechnen Sie die Wechselspannungsverstärkung $v=\frac{u_a}{u_e}$ und den Eingangswiderstand $r_e=\frac{u_e}{i_e}$ für das **vereinfachte** Wechselstromersatzschaltbild.

5. Aufgabe (5 Punkte): Konstantstromquelle

Eine Konstantstromquelle (siehe Abbildung 1) liefert einen Strom $I_L=2\ mA$. Gegeben sind:

- Transistor T_1 : B = 200, $U_{BE} = 0,7 V$
- $\bullet \ U_E = 5 \ V$
- $\bullet \ I_2 = I_L = 2 \ mA$
- $U_B = 20 V$

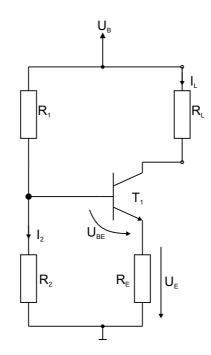
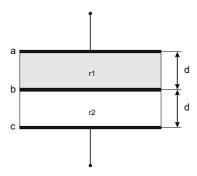


Abbildung 1: Schaltung Stromquelle

5.1. Widerstands-Berechnung (3 Punkte)

Berechnen Sie die Wiederstandswerte für $R_E,\,R_2$ und $R_1.$


5.2. Basisspannungsstabilisierung (2 Punkte)

- ullet Durch welches Halbleiterbauelement sollte R_2 ersetzt werden, um das Basispotential (= $U_{BE}+U_E$) weitgehend unabhängig von Schwankungen der Betriebsspannung U_B zu machen?
- Zeichnen Sie die neue Schaltung.

6. Aufgabe (5 Punkte): Berechnung einer Kapazität aus einer gegebenen Geometrie

Gegeben ist ein Parallelkondensator aus drei dünnen Metallplatten mit der Fläche $A=60cm^2$. Dieser wird auf die Spannung U=800V aufgeladen und dann von der Spannungsquelle getrennt.

$$d = 10mm$$
, $\varepsilon_{r1} = 3$, $\varepsilon_{r2} = 1$, $\varepsilon_{0} = 0$, $885 \cdot 10^{-13} \frac{As}{Vcm}$

6.1. Ersatzschaltbild, Kapazität und Spannung (2 Punkte)

Geben Sie das Ersatzschaltbild für den Kondensator an, und bestimmen Sie die Gesamtkapazität und die Spannung U_{ab} zwischen den Platten a und b.

Hinweis: Die Ladung an den Platten bleibt erhalten!

6.2. Spannung am Kondensator (1,5 Punkte)

Der Abstand der Platten b und c wird durch Verschieben der Platte c auf 20mm vergrößert. (Zwischen den Platten b und c befindet sich Luft und das Dielektrikum ändert sich beim Verschieben nicht.) Wie groß sind die Spannungen U_{ab} und U_{bc} .

6.3. Relative Dielektrizitätskonstante (1,5 Punkte)

Eine dielektrische Platte mit der Dicke 10mm wird zwischen die Platten b und c hineingeschoben. Die Spannung U_{acneu} beträgt nun 920V. Wie gross ist die relative Dielektrizitätskonstante ε_{rx} des Dielektrikums?