

2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni 2002

Name:	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Vorname:		 •	•	•	•		•	•	•	•	•	•	•	•	•	•
Matr -Nr ·																

Bitte den Laborbeteuer ankreuzen				
Reyk Brandalik	Björn Eissing	Dirk Freyer		
Karsten Gänger	Lars Thiele	Christian Jung		
Marc Löbbers	Valerij Matrose	Nico Mock		
Jörg Panzer	Stephan Rein	Jörg Schröder		
Markus Wortmann	Uzmee Bazarsuren	Heik Hellmich		
Dietmar Jung	Sven Tschirley	Andreas Schulz		
Wiederholer	sonstiges	weiß' nicht		

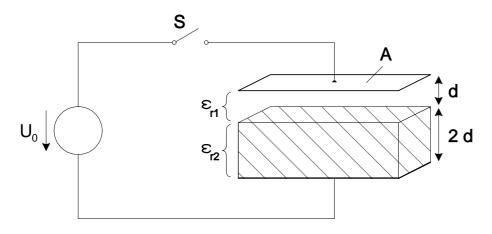
Bearbeitungszeit: 90 Minuten

- Trennen Sie den Aufgabensatz nicht auf.
- Benutzen Sie für die Lösung der Aufgaben nur das mit diesem Deckblatt ausgeteilte Papier.

 Lösungen, die auf anderem Papier geschrieben werden, können nicht gewertet werden.

 Schreiben Sie Ihre Lösung auch auf die Rückseiten der Blätter! Weiteres Papier kann bei den

 Tutoren angefordert werden.
 - Schreiben Sie deutlich! Doppelte, unleserliche oder mehrdeutige Lösungen können nicht gewertet werden.
 - Schreiben Sie nicht mit Bleistift!
 - Schreiben Sie nur in blau oder schwarz!


A1	A2	A3	A4	Summe

Name: A1
Matr.-Nr.

1. Aufgabe (5 Punkte): Elektrisches Feld

Ein Plattenkondensator der Fläche $A=200~cm^2$ wird auf eine Spannung $U_0=1000~V$ aufgeladen. Der Schalter S wird danach geöffnet. Im Inneren des Kondensators befindet sich ein geschichtetes Dielektrikum mit $\varepsilon_{r1}=1$ (Luft) und $\varepsilon_{r2}=4$.

$$d=1\,cm$$
 , $\varepsilon_0=8,854\cdot 10^{-12}\,\frac{As}{Vm}$

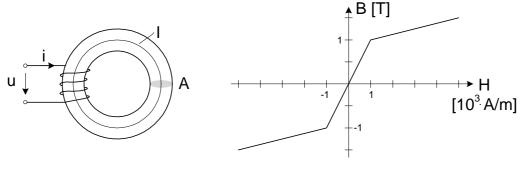
Hinweis: Der Rechenweg muß erkennbar sein.

1.1. (2 Punkte)

Berechnen Sie die Gesamtkapazität in der oben dargestellten Anordnung. Wie groß ist die elektrische Feldstärke E_2 im Dielektrikum ε_{r2} ? Wie groß ist die im Kondensator gespeicherte Energie W?

1.2. (1 Punkt)

Man entfernt nun bei offenem Schalter S das Dielektrikum ε_{r2} vollständig aus dem Kondensator. Welchen Wert nimmt die Spannung am Kondensator an?


1.3. (2 Punkte)

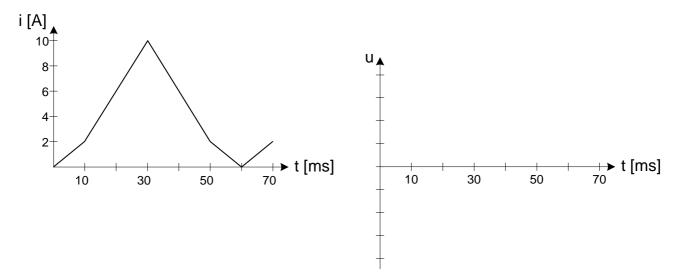
In der oben dargestellten Anordnung werden bei geschlossenem Schalter die Platten soweit auseinander gezogen, daß der Luftspalt ebenfalls $2 \cdot d$ beträgt.

Wie groß ist die zwischen Kondensator und Spannungsquelle bewegte Ladung ΔQ ? Nimmt die Ladung auf dem Kondensator zu oder ab? (Begründung!)

2. Aufgabe (5 Punkte): Induktivität einer Spule

Gegeben ist die folgende Anordnung:

$$N=100$$
 , $l=20$ $cm,$ $A=1$ $cm^2,$ $\mu_0=1,256\cdot 10^{-6}$ $\frac{Vs}{Am}$

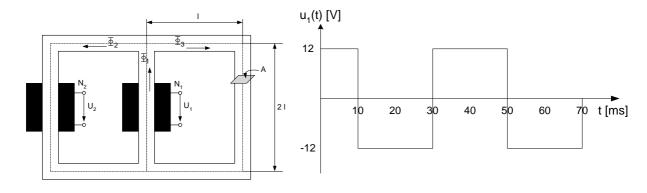

Hinweis: Der Rechenweg muß erkennbar sein.

2.1. (1 Punkt)

Berechnen Sie die Induktivität im ungesättigten Bereich!

2.2. (3 Punkte)

Berechnen Sie die Spannung u(t) für den unten dargestellten Strom i(t) und tragen Sie den Verlauf in das unten vorgegebene Diagramm ein. (Achsenbeschriftung nicht vergessen!)



2.3. (1 Punkt)

Wie groß ist die Induktion zum Zeitpunkt t=0 ? (Begründung!)

3. Aufgabe (5 Punkte): Das magnetische Feld:

Gegeben ist der unten abgebildete Eisenkreis mit zwei gleichen Außenschenkeln und den Spulen L_1 und L_2 . Der Zusammenhang zwischen der Flußdichte B und der Feldstärke H sei linear.

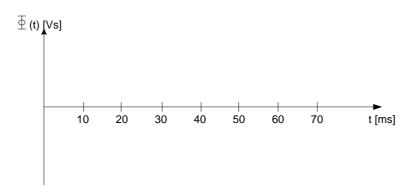
$$\begin{array}{ll} l = 5cm & N_1 = 100 & \mu_0 = 1,256 \cdot 10^{-6} \frac{Vs}{Am} \\ A = 2cm^2 & N_2 = 400 & \mu_r = 318 \end{array}$$

Die Spannung an der Spule 1 mit der Windungszahl N_1 habe den oben dargestellten Verlauf, der anderen Spule wird keine Spannung eingespeist.

3.1. (1 Punkt)

Stellen Sie das magnetische Ersatzschaltbild auf.

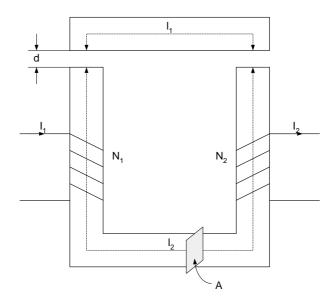
3.2. (1,5 Punkte)


Berechnen Sie den magnetischen Gesamtwiderstand für die magnetische Spannungsquelle 1.

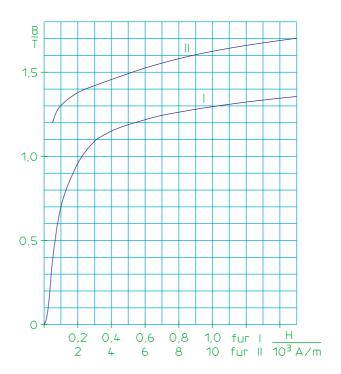
Name:	 Δ3
MatrNr.	

3.3. (1 Punkt)

Geben Sie qualitativ den zeitlichen Verlauf des magnetischen Flusses Φ_1 und Φ_2 an. Die Spannung U_1 ist vorgegeben und der magnetische Fluß beträgt zu Beginn $\Phi_1(t=0)=0Vs$.



	45 7 1000	Name:	 Λ3
8	17. Juni 2002	MatrNr.	 AJ


3.4. (1,5 Punkte)

Bestimmen Sie das Verhältnis der Spannungsamplituden $\frac{U_2}{U_1}$.

4. Aufgabe (5 Punkte):

Gegeben ist folgender magnetischer Kreis mit einem nichtlinearen Eisenkern. Die Magnetisierungskurve ist dem nachfolgenden Diagramm zu entnehmen.

$$I_1 = 4A$$
 $N_1 = 1000$
 $I_2 = 2A$ $N_2 = 500$
 $A = 5cm^2$ $l_1 = 5cm$
 $l_2 = 15cm$ $\mu_0 = 1,256 \cdot 10^{-6} \frac{Vs}{Am}$

The d	E 17 1 : 2002	Name:	 Δ Δ
	ළී 17. Juni 2002	MatrNr.	

4.1. (2,5 Punkte)

Wie groß muß die Länge d des Luftspaltes sein, damit sich eine magnetische Flußdichte B = 1,5 T ergibt ?

Name:	
MatrNr.	

4.2. (1,5 Punkte)

Welche magnetische Feldstärke H stellt sich dann im Eisen und im Luftspalt ein ?

4.3. (1 Punkt)

Welcher Strom I_2 muß in der Wicklung N_2 fließen, damit die magnetische Flußdichte im Luftspalt zu Null wird ?

Name:	
MatrNr.	

Name:	
MatrNr.	