Klausur Grundlagen der Elektrotechnik (Version 4 für Diplom)

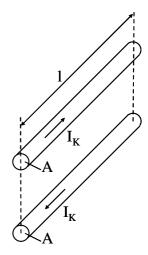
29.02.2012

- Die Klausur besteht aus 9 Aufgaben, davon 8 Textaufgaben und ein Single-Choice-Teil.
- Bei 60 von 60 erreichbaren Punkten wird die Note 1,0 gegeben; entsprechend bei 30 Punkten eine 4,0. Halbe Punkte werden nicht gegeben.
- zulässige Hilfsmittel: Lineal, Winkelmesser, nicht kommunikationsfähiger Taschenrechner, 1 handbeschriebenes Blatt A4 Formelsammlung
- Dauer der Klausur: 2 h

Name:	Vorname	
Matrikelnummer:		
Studienrichtung:		
Unterschrift:		

Bereich für die Korrektur

Aufgabe	Punkte	
1		
2		
3		
4		
5		
Summe		
Note		


Aufgabe	Punkte	
6		
7		
8		
9		

Aufgabe 1:

In einem Gleichstromnetz soll ein zweiadriges Kabel die elektrische Eingangleistung $P_{ein} = 3 \text{ kW}$ über eine Entfernung von l = 500 m übertragen. Die Spannung am Einspeisepunkt beträgt $U_{ein} = 230 \text{ V}$.

Die Spannung am Verbraucher muss mindestens $U_{aus} = 207 \text{ V}$ betragen.

Das für das Kabel verwendete Kupfer weist bei Betriebstemperatur einen spezifischen Widerstand von $\rho=2\ 10^{-8}\ \Omega m$ auf.

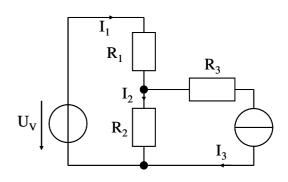
Fragen:

- 1. Wie groß darf die über Hin- und Rückleiter des Kabels abfallende Spannung U_K maximal sein? (1 Punkt)
- 2. Welcher Strom I_K fließt im Kabel? (1 Punkt)
- 3. Wie groß darf der Widerstand jedes der zwei Leiter höchstens sein? (1 Punkt)
- 4. Welche Querschnittsfläche A müssen Sie mindestens einsetzen? (2 Punkte)

Lösung Aufgabe 1:

Aufgabe 2:

Der Strom I_2 soll nach dem Überlagerungssatz ermittelt werden. Folgende Werte für die Bauelemente seien gegeben:


$$U_{\rm v} = 10 \ {\rm V}$$

 $I_3 = 10 \text{ mA}$

 $R_1 = 330 \Omega$

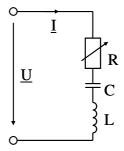
 $R_2 = 560 \Omega$

 $R_3 = 100 \Omega$

Fragen:

- 1. Eliminieren Sie die Stromquelle und berechnen Sie den Strom I_{21} für $I_3 = 0$ A! (2 Punkte)
- 2. Eliminieren Sie die Spannungsquelle und berechnen Sie den Strom I_{22} für $U_V = 0 \ V$ (2 Punkte)
- 3. Berechnen Sie den Strom I₂! (1 Punkt)

Lösung Aufgabe 2:


Aufgabe 3:

Das untenstehende Bild zeigt das Schaltbild einer Reihenschaltung aus einer Kapazität und einem verstellbaren ohmschen Widerstand. Die Daten lauten:

$$R = x.50 \Omega \text{ mit } 0.2 \le x \le 1$$

C = 1 F

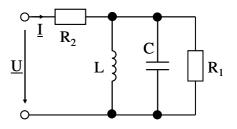
L = 1 mH

Fragen:

- 1. Geben Sie die Resonanzkreisfrequenz ω_0 und die Resonanzfrequenz f_0 des Schwingkreises an! (2 Punkte)
- 2. Wie groß ist die Phasenverschiebung zwischen Spannung \underline{U} und Strom \underline{I} bei Resonanz? (1 Punkt)
- 3. Geben Sie die Kennimpedanz des Schwingkreises an! (1 Punkt)
- 4. In welchem Bereich kann die Güte des Schwingkreises durch Variation von R verstellt werden? (1 Punkt)

Lösung Aufgabe 3:

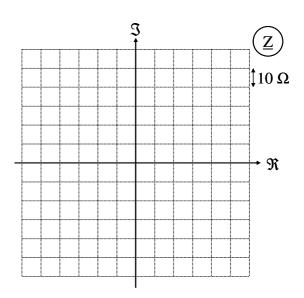
Aufgabe 4:


Die nebenstehende Skizze zeigt eine Schaltung aus einem Parallel-Resonanzkreis (C und L) und zwei Widerständen (R_1 und R_2).

 $R_1 = 30 \Omega$

 $R_2 = 20 \Omega$

L = 100 H


C = 100 nF

Fragen:

- 1. Wie groß werden die Beträge der Impedanz Z_{R1LC} des Parallel-Resonanzkreises bei den Frequenzen Null bzw. unendlich sowie bei der Resonanzfrequenz f_0 ? (2 Punkte)
- 2. Zeichnen Sie die Impedanz $\underline{Z} = \underline{U}/\underline{I}$ im Resonanzpunkt in die unten stehende Skizze ein! (1 Punkt)
- 3. Zeichnen Sie die Impedanz $\underline{Z} = \underline{U}/\underline{I}$ bei f = 0 und $f \to \infty$ in die unten stehende Skizze ein! (1 Punkt)
- 4. Zeichnen Sie qualitativ die Ortskurve von $\underline{Z} = \underline{U}/\underline{I}!$ (1 Punkt)

Lösung Aufgabe 4:

Aufgabe 5:

Gegeben sei die nebenstehende Verstärkerschaltung. Die Spannungsverstärkung soll mit Hilfe eines linearisierten Wechselstrom-Ersatzschaltbilds ermittelt werden.

Der Transistor T_1 kann durch den Steilheitskoeffizienten $S=20~\text{mA/V}^2$ und die Threshold-Spannung $U_{th}=2,1~\text{V}$ beschrieben werden. Die Kapazität C_{GS} darf vernachlässigt werden.

Die Daten der übrigen Bauelemente lauten

 $R_D = 15 \text{ k}\Omega$

 $R_{G1} = 910 \text{ k}\Omega$

 $R_{G2} = 100 \text{ k}\Omega$

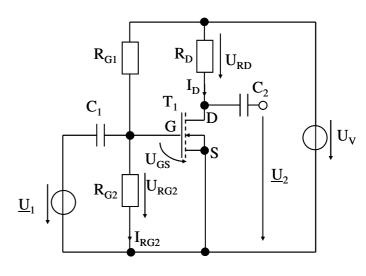
 $C_1 \rightarrow \infty$

 $C_2 \rightarrow \infty$

 $U_{V} = 24 \text{ V}$

Fragen:

Zunächst sei $U_1 = 0 \text{ V}$.

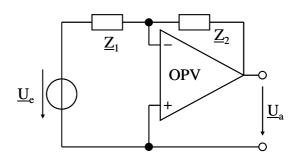

2. Geben Sie I_{D0} im Arbeitspunkt an! (1 Punkt)

3. Wie groß wird U_{DS0} im Arbeitspunkt? (1 Punkt)

Nun soll eine kleine Wechselspannung U₁ angegelegt werden.

- 4. Ermitteln Sie die Steilheit $\Delta \underline{I}_D/\Delta \underline{U}_{GS}$ aus dem Steilheitskoeffizienten und der Spannung U_{GS} im Arbeitspunkt! (1 Punkt)
- 5. Wie groß ist die Wechselspannungs-Verstärkung $\underline{U}_2/\underline{U}_1$ bei mittlerer Frequenz? (1 Punkt)

Lösung Aufgabe 5:



Fortsetzung Lösung Aufgabe 5:

Aufgabe 6:

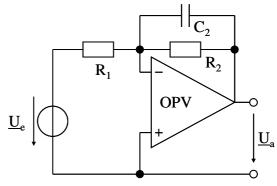
Die nebenstehende Skizze zeigt eine Wechselspannungs-Verstärkerschaltung.

OPV stellt einen idealen Operationsverstärker dar.

Fragen:

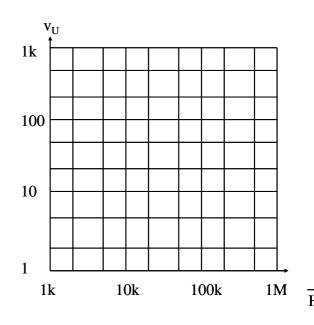
- Markieren Sie Knoten und Maschen im obigen Schaltbild, zeichnen Sie fehlende Größen ein und geben Sie einen vollständigen Satz von Knoten- und Maschengleichungen an! (3 Punkte)
- 2. Berechnen Sie die Spannungsverstärkung $\underline{v}_U = \underline{U}_a/\underline{U}_e$!

(1 Punkt)


 \underline{Z}_1 sei ein ohmscher Widerstand, \underline{Z}_2 eine Parallelschaltung aus Kapazität und ohmschem Widerstand.

Die Daten der Widerstände und der Kondensatoren lauten:

$$R_1 = 1 k\Omega$$


$$R_2 = 15,9 \text{ k}\Omega$$

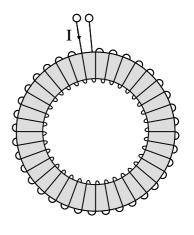
$$C_2 = 1 \text{ nF}$$

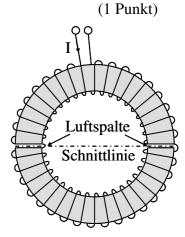
3. Zeichnen Sie den Amplitudengang der Verstärkung das unten stehende Bode-Diagramm! (1 Punkt)

Lösung Aufgabe 6:

Fortsetzung Lösung Aufgabe 6:

Aufgabe 7:


Nebenstehende Skizze zeigt die Draufsicht einer so genannten Ringkernspule, wie sie z. B. in Filtern verwendet wird. Der dünne Ring des Kerns ist aus Weicheisen mit der Permeabilität $_{Fe} = 1000$ aufgebaut, und es tritt keine Streuung auf.


Die geometrischen Daten lauten: $A_{Fe} = 10 \text{ mm}^2$ (Querschnittsfläche des Rings) $l_{Fe} = 400 \text{ mm}$ (mittlere Länge des Rings) w = 36

Der Strom in der Spule beträgt I = 10 A.

Fragen:

- 1. Berechnen Sie die magnetische Feldstärke H_{Fe} im Weicheisen? (1 Punkt)
- 2. Bestimmen Sie die magnetische Flussdichte B_{Fe} im Weicheisen! (1 Punkt)
- 3. Ermitteln Sie die magnetische Flussverkettung Ψ ! (1 Punkt)
- 4. Wie groß ist die Induktivität der Spule L?
- 5. Wie verändert sich qualitativ die Induktivität L, wenn der Kern aus produktionstechnischen Gründen erst horizontal auseinandergeschnitten (so genannter U-Kern) und danach wieder mit einem Luftspalt zusammengeklebt wurde? (1 Punkt)

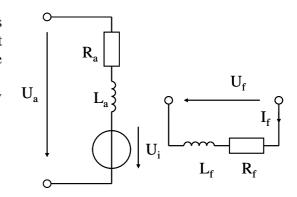
Lösung Aufgabe 7:

(1 Punkt)

Aufgabe 8:

Ein fremderregter Gleichstrommotor soll als Antrieb in einem Flurförderfahrzeug eingesetzt werden. Er kann durch das nebenstehende Ersatzschaltbild ausreichend beschrieben werden.

Der Hersteller gibt folgende Daten bei $U_{aN} = 24 \text{ V}$ an:


Bemessungs-Leistung: $P_N = 2 \text{ kW}$

Bemessungs-Drehzahl: $n_N = 2000 \text{ min}^{-1}$

Bemessungs-Ankerstrom: $I_N = 100 A$

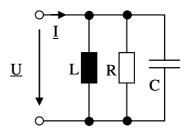
Bemessungs-Feldstrom bei $U_{fN} = 12 \text{ V}$: $I_{fN} = 5 \text{ A}$

Die Sättigung darf vernachlässigt werden.

Fragen:

- 1. Geben Sie die gesamte aufgenommene elektrische Leistung P_{elN} im Bemessungspunkt an! (1 Punkt)
- 2. Berechnen Sie das Bemessungs-Drehmoment M_N ! (1 Punkt)
- 3. Ermitteln Sie den Ankerwiderstand R_a!
- 4. Wie groß ist die Ankerspannung U_{a4} einzustellen, wenn mit vollem Bemessungsdrehmoment M_N angefahren werden soll (also n=0)? (1 Punkt)
- 5. Wie groß ist die Erregerspannung U_{f5} einzustellen, wenn die volle Leistung P_N bei $n = 4000 \text{ min}^{-1}$ zur Verfügung stehen soll? (1 Punkt)

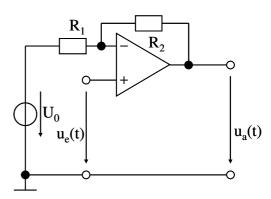
Lösung Aufgabe 8:

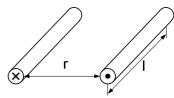

Aufgabe 9: max. 20 Punkte

- Zu jeder Frage ist nur eine Antwort richtig.
- Jede richtige Antwort wird mit einem Punkt gewertet. Falsche oder keine Antworten werden als null Punkte gewertet.
- Die Punkte werden addiert und pauschal 10 Punkte für zufällig richtige Antworten abgezogen, d. h. es können maximal 20 Punkte erreicht werden. Negative Gesamtergebnisse werden als 0 Punkte gewertet.
- Kreuzen Sie daher zu jeder Frage eine Antwort a, b oder c an (z.B. 🗶)!

Fragen:

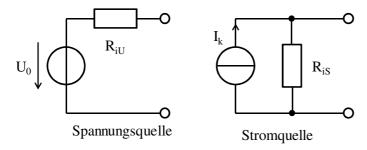
- 1. Für welche Geräte wird Konstantandraht eingesetzt?
- a Temperatursensoren.
- b Temperaturunabhängige Präzisionswiderstände.
- c Spannungskonstanter.
- 2. Welche Aussage bezüglich Elektromotoren ist richtig?
- a Elektromotoren können nicht auf Basis rein elektrischer Felder gebaut werden.
- b Elektrische Felder können im Motorenbau verwendet werden, ergeben jedoch eine geringere Volumen-Ausnutzung als magnetische Felder.
- c Motoren auf Basis elektrischer Felder sind grundsätzlich kleiner als Gleichstrommotoren auf Basis magnetischer Felder.
- 3. Welches Material eignet sich zur Herstellung von hochohmigen Widerständen?
- a Kohle wegen der relativ geringen metallischen Leitfähigkeit.
- b Schwefelsäure wegen der niedrigen Zersetzungsspannung.
- c Silber wegen des geringen spezifischen Widerstands.
- 4. Welches der folgenden Materialien eignet sich als Isolator in Halbleiterchips?
- a n-dotiertes Silizium
- b Siliziumdioxid
- c Kupferoxydul


- 5. Welche Maßnahme verringert die Bandbreite des nebenstehenden Resonanzkreises, ohne die Resonanzfrequenz zu verändern?
- a Verminderung des Widerstands R
- b Verringerung von L und C um den gleichen Faktor
- c Erhöhung der Spannung u(t)


- 6. Welches elektronische Bauteil können Sie als steuerbaren Schalter verwenden?
- a MOSFET
- b Multivibrator
- c Wheatstone'sche Brücke
- 7. Welche schaltungstechnische Maßnahme bei Operationsverstärkern bewirkt, dass die Eingangsdifferenzspannung nahe Null liegt?
- a Kopplung von Ausgang und invertierendem Eingang durch einen Widerstand.
- b Kopplung von Ausgang und nichtinvertierendem Eingang durch einen Widerstand.
- c Festlegung des invertierenden Eingangs auf Masse und Anlegen einer Spannung > 10 V an den nichtinvertierenden Eingang.
- 8. Wie müssen Sie eine (im Stator geblechte) Gleichstrommaschine schalten, damit sie bei Anlegen einer Wechselspannung ein Drehmoment abgibt?
- a In Reihenschluss.
- b In Nebenschluss.
- c Die Maschine muss permanenterregt sein.
- 9. Warum haben Schütze (elektromagnetisch betätigte Schalter) im angezogenen Zustand einen Arbeitskontakt, der einen Widerstand in Reihe mit der Wicklung schaltet?
- a Der Widerstand dämpft die Vibration im Wechselstrombetrieb.
- b Wenn der Anker im angezogenen Zustand auf dem Joch aufliegt, wird der Luftspalt so klein, dass ein geringer Haltestrom ausreicht.
- c Der immer eingebaute Permanentmagnet sorgt im angezogenen Zustand für eine zu starke Anziehungskraft, die durch Erwärmung des Magneten reduziert werden muss.

- 10. Warum stellen elektrische Energieversorgungsunternehmen die aufgenommene Blindleistung in Rechnung?
- a Die Blindleistung fällt als Abfallprodukt an und wird daher dem Verbraucher in Rechnung gestellt.
- b Die Verbraucher sollen motiviert werden, Blindleistungs-Kompensationsanlagen anzuschaffen.
- c Der Blindanteil des Stroms belastet die Leitungen und erzeugt dadurch Leitungskosten.
- 11. Mit welcher Frequenz pulsiert die Leistung in einem 16,7 Hz-Bahn-Wechselspannungsnetz?
- a 16,7 Hz
- b 33,3 Hz
- c 100 Hz
- 12. Zwei Verstärker mit der jeweiligen Spannungsverstärkung v_U = -100 und jeweils endlichen Ein- und Ausgangswiderständen werden hintereinander geschaltet. Wie groß ist die Gesamtverstärkung?
- a -10.000
- b 10.000
- c kleiner als 10.000, da Ein- und Ausgangswiderstände berücksichtigt werden müssen.
- 13. Ein permanenterregter Gleichstrommotor wird mit konstanter Ankerspannung U_a und konstanter Last M_i betrieben. Sie stellen fest, dass die Drehzahl in der ersten halben Stunde des Betriebs langsam geringer wird. Geben Sie den Grund an!
- a Die Stromwärme erhöht den Ankerwiderstand, und dadurch sinkt die Drehzahl.
- b Es handelt sich um Lagerverschleiß-Erscheinungen.
- c Die Permanentmagnete werden entmagnetisiert.

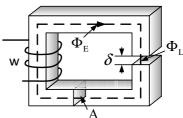
- 14. Welche Aussage gilt für die nebenstehende Schaltung mit einem idealen Operationsverstärker?
- a Der Ausgang kann nur die Werte $\pm U_V$ (U_V : Versorgungsspannung) annehmen.
- b Die Verstärkung beträgt $v_U = u_e/u_a = 1+(R_2/R_1)$, falls keine Begrenzung auftritt.
- c Die Verstärkung hängt von U_0 ab.



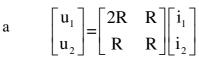
- 15. Was geschieht in einer Halbleiterdiode beim Erreichen der Zenerspannung?
- a Die Diode wird aufgrund des elektrischen Durchschlags immer zerstört.
- b Die Diode erreicht den Sperrstrom, der dann für beliebige höhere Spannung konstant bleibt.
- c Der Sperrstrom steigt stark an. Der Vorgang ist jedoch reversibel, falls keine thermische Zerstörung auftritt.
- 16. Das Ampèresche Gesetz beschreibt die Kraft auf zwei parallele, stromdurchflossene Leiter. Welche Aussage trifft zu?

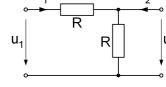
- a Bei gegensinniger Stromrichtung ziehen die Leiter sich gegenseitig an.
- b Die Kraft ist proportional zum Kehrwert des Abstandquadrates. ($F \sim 1/r^2$)
- c Die Kraft ist direkt proportional zu den Strömen in den Leitern. (F ~ I_1*I_2)
- 17. Zwei entgegengesetzte geladene Punktladungen sind im Abstand r voneinanander angeordnet. Welche Aussage ist richtig?
- a Die beiden Ladungen ziehen sich an und die Kraft ist unabhängig vom Abstand.
- b Die beiden Ladungen ziehen sich an. Die Kraft ist dabei unabhängig vom Betrag der Punktladungen aber proportional zum Kehrwert des Abstandsquadrats ($F \sim 1/r^2$).
- c Die beiden Ladungen ziehen sich an und die Kraft wird vom Kehrwert des Abstandsquadrats ($F \sim 1/r^2$) und den Betrag der Punktladungen bestimmt.

18. Eine Spannungsquelle soll in eine Stromquelle umgerechnet werden. Welche Aussage ist richtig?



- a Eine Spannungsquelle kann generell nicht in eine Stromquelle umgerechnet werden.
- b Eine Umrechnung ist möglich, es muss aber beachtet werden, dass R_{iU} ungleich R_{iS} ist.
- c Der Strom I_k kann aus U_0 und R_{iU} bestimmt werden.
- 19. Ein Strommessgerät habe einen Messbereich von 0..10A und einen Innenwiderstand von $Ri = 70m\Omega$. Durch welche Maßnahme könnte man mit diesem Gerät auch Ströme bis 100A messen?
- a In Reihe schalten eines Shuntwiderstandes mit $7m\Omega$.
- b Parallelschalten eines Shuntwiderstandes mit $7m\Omega$.
- c Parallelschalten eines Shuntwiderstandes mit $700\text{m}\Omega$.
- 20. In nebenstehender Schaltung sei für die Zeit t<t0 die Kondensatorspannung null. Im Zeitpunkt t0 wird der Schalter S geschlossen.
 Welche Aussage trifft zu?

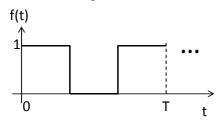



- a Die Zeitkonstante des Spannungsverlaufes am Kondensator beträgt $\tau = 0.25$ ns.
- b Die Spannung über dem Kondensator nähert sich gemäß einer Exponentialfunktion 5V an.
- c Die Spannung über dem Widerstand nähert sich gemäß einer Exponentialfunktion 5V an.

21. Die Induktivität L des nebenstehenden magnetischen Kreises soll aus dem gegebenen magnetischen Widerstand R_m bestimmt werden. Die Windungszahl der Erregerspule wird mit w bezeichnet.

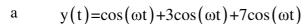

- a Die Induktivität kann aus dem Kehrwert des magnetischen Widerstands $R_{\rm m}$ und dem Quadrat der Windungszahl w bestimmt werden.
- b Die Induktivität ist gleich dem mag. Widerstand.
- c Die Induktivität eines mag. Kreises kann nicht aus dem magnetischen Widerstand bestimmt werden.
- Zwei Spulensysteme mit den Selbstindktivitäten L_1 und L_2 sind magnetisch gekoppelt. Die magnetische Kopplung ist durch den Koppelfaktor k gegeben. Was gilt für die Gegeninduktivität M
- a $M=k\sqrt{L_1 \cdot L_2}$
- b $M=k \cdot L_1 \cdot L_2$
- c $M=k\cdot\frac{1}{2}(L_1+L_2)$
- 23. Welche Vierpolgleichung beschreibt die nebenstehende Schaltung?

- b $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} R & 1/R \\ 1/R & R \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$
- $c \qquad \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} R & 2R \\ 2R & R \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$

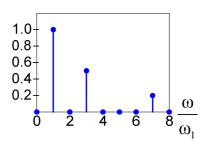

24. Der Operationsverstärker wird an der Versorgungsspannung betrieben. Welche Funktion hat die Schaltung?

- a Nicht-invertierender Verstärker: $u_a = \left(1 + \frac{R_2}{R_1}\right)u_e$
- b Komparator mit Hysterese: $u_a = \pm U_B$
- c Invertierender Verstärker: $u_a = -\frac{R_2}{R_1}u_e$
- 25. Welche Größe G wird mit Hilfe der folgenden Formel berechnet?

$$G = \sqrt{\frac{1}{T} \int_{0}^{T} i(t)^{2} dt}$$


- a Der Gleichrichtwert des Stroms i(t).
- b Der Effektivwert des Stroms i(t).
- c Der arithmetische Mittelwert des Stroms i(t).
- 26. Die dargestellte Funktion soll mit Hilfe einer Fourierreihe beschrieben werden. Welche Aussage trifft zu?

$$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos(k\omega t) + b_k \cdot \sin(k\omega t))$$


- a Die Koeffizienten a_k und b_k sind alle ungleich Null.
- b Die Koeffizienten b_k sind alle gleich Null.
- c Die Koeffizienten a_k sind für k > 0 gleich Null.

27. Von welchem Signal y(t) wird hier das Amplitudenspektrum gezeigt?

b
$$y(t)=\cos(\omega t)+\frac{1}{2}\cos(3\omega t)+\frac{1}{5}\cos(7\omega t)$$

c
$$y(t) = \cos(\omega t) + \cos(3\omega t) + \cos(7\omega t)$$

28. Welche Aussage über das uneigentliche Integral

$$I = \int_{-\infty}^{\infty} u(t) \cdot \delta(t - t_0) dt \qquad (\delta(t) \text{ ist die Dirac funktion})$$
 ist richtig?

- a I = 1 da laut Definition die Fläche der Diracfunktion gleich 1 ist
- b $I = u(t_0)$ aufgrund der Ausblendeigenschaft der Diracfunktion
- c Das Integral kann nicht berechnet werden, da die Integrationsgrenzen im Unendlichen liegen.
- 29. Eine Abbildung y = u(t) heisst linear wenn gilt:

a
$$u(a \cdot t_1 + b \cdot t_2) = a \cdot u(t_1 + b \cdot t_2)$$

b
$$u(a \cdot t_1 + b \cdot t_2) = a \cdot b \cdot (u(t_1) + u(t_2))$$

c
$$u(a \cdot t_1 + b \cdot t_2) = a \cdot u(t_1) + b \cdot u(t_2)$$

30. Welche der Gleichungen im Laplacebereich korrespondiert mit der Differentialgleichung des Maschenstromes in der Schaltung?

a
$$I(s) = U_0 \frac{L}{R} \cdot s$$

b
$$I(s) = \frac{U_0}{R} + \frac{U_0}{I_0 \cdot s}$$

c
$$I(s) = \frac{U_0}{R + L \cdot s}$$