7. Klausurrechnen:

Clemens Helfmeier, Norbert Herfurth und Anne Beyreuther Sprechstunde: Montag 10:30-11:30 Uhr im EN-132

Allen Berechnungen dieser Übung wird ein Si-Halbleiter mit folgenden, vereinfachten Materialparametern zugrunde gelegt:

$$\begin{array}{|c|c|c|c|}\hline \text{Temperatur}\\ T=300\,\text{K} & \text{Boltzmann-Konstante}\\ K_B=8,617\cdot 10^{-5}\,\text{eV/K} & \epsilon_0=8,85\cdot 10^{-12}\,\text{A}\,\text{s/(V}\,\text{m}) \\ \hline & \text{effektive Zustandsdichten in Si}\\ N_V,\,N_C=1\cdot 10^{19}/\text{cm}^3 & \text{Bandlücke von Si}\\ W_g=1,12\,\text{eV} \\ \hline & \text{rel. Dielektrizitätskonstante für Si}\\ \epsilon_r=11,7 & \text{Akzeptorkonzentration im p-Gebiet}\\ N_A=1\cdot 10^{15}/\text{cm}^3 \\ \hline & \text{Donatorkonzentration im n-Gebiet}\\ N_D=1\cdot 10^{17}/\text{cm}^3 & \text{Beweglichkeit der Elektronen}\\ N_D=1\cdot 10^{17}/\text{cm}^3 & \text{Diffusionslängen von Elektronen und Löchern}\\ \mu_p=400\,\text{cm}^2/(\text{V}\,\text{s}) & \text{Durschnittsfläche der Diode}\\ A=100\,\mu\text{m}\times 100\,\mu\text{m} \\ \hline \end{array}$$

7.1 Halbleiterphysik

- **7.1.** Die Elektronenkonzentration n_p in einem p-dotierten Silizium Halbleiter beträgt $n_p = 1 \cdot 10^5/\text{cm}^3$. Wie groß ist die Löcherkonzentration p_p für eine Temperatur von $T = 300 \,\text{K}$? Geben Sie die zugehörige Bestimmungsgleichung an.
- **7.2.** Geben Sie die vollständigen Strom- und Bilanzgleichungen für beide Ladungsträgertypen an!
- **7.3.** Im Silizium ist die Beweglichkeit μ_n für Elektronen drei mal so groß, wie die Beweglichkeit für Löcher μ_p ($\mu_n=3\mu_p$).
 - Welche Ladungsträgerdichte muss eingestellt werden, damit die Leitfähigkeit im Gleichgewicht minimal ist?
 - Wie groß ist das Verhältnis der minimalen Leitfähigkeit zur Leitfähigkeit im intrinsischen Halbleiter?
 - Welcher Dotierstofftyp wäre im Fall der minimalen Leitfähigkeit nötig?

Zusatzaufgabe: Wie könnte man das Ferminiveau und die Dotierstoffkonzentration anschließend bestimmen, wenn ein Dotierstoff mit einem Abstand von 100 meV zwischen Energieniveau des Dotierstoffes und der näheren Bandkante verwendet wird?

7.2 pn-Übergang

- **7.1.** Zeichnen Sie das Energiebändermodell eines idealen pn-Übergangs. Achten Sie auf Achsenbeschriftung, die Bandkanten und die Fermi-Energie.
- **7.2.** Der Verlauf der Ladungsträgerkonzentration der Minoritäten im p-Gebiet einer Diode sei gegeben durch:

$$\mathbf{n}_{p}(x) = n_{p0} + n_{p0} \left[\exp\left(\frac{U}{U_{T}}\right) - 1 \right] \exp\left(\frac{x + w_{p}}{L_{n}}\right)$$
 (7.1)

- Wie lässt sich aus diesem Ansatz und dem in ähnlicher Form für das n-Gebiet zu berechnenden $\mathbf{p}_{\rm n}(x)$ die Gesamtstromdichte der Diode, also die Kennliniengleichung berechnen? Machen Sie den Rechenweg deutlich und zeigen Sie als Ergebnis die Kennliniengleichung einer Diode nach dem Shockleyschen Modell. Hinweis: Die berechneten Stromanteile müssen an der Grenze der Raumladungszone bei $x=-w_{\rm p}$ und $w_{\rm n}$ ausgewertet werden.
- Wie setzt sich somit der Sperrsättigungsstrom zusammen?