TECHNISCHE UNIVERSITÄT BERLIN

WS 01/02 10.04.2002

Fakultät II, Institut für Mathematik Prof. G. Frank

April–Klausur (Rechenteil) Integraltransformationen und partielle Differentialgleichungen

Name: Vorname:
(ch wünsche den Aushang des Klausurgebnisses unter Angabe meiner Matr.–Nr. (ohne Namen) am Schwarzen Brett und im WWW ¹ Ja / Nein ² Unterschrift
Neben einem handbeschriebenen A4 Blatt mit Notizen sind keine Hilfsmittel zugelassen. Die Lösungen sind in Reinschrift auf A4 Blättern abzugeben. Mit Bleistift geschriebene Klausuren können nicht gewertet werden. Die Gesamtklausur ist mit 32 von 80 Punkten bestanden, wenn in jedem der beiden Teile der Klausur mindesten 10 von 40 Punkten erreicht werden.
Dieser Teil der Klausur umfasst die Rechenaufgaben. Die Bearbeitungszeit berägt eine Stunde.
Einsichtnahme: Dienstag, 16.04.2002, 14.00-16.00 Uhr, MA 848.

1	2	3	4	\sum

¹http://www.math.tu-berlin.de/HM/

 $^{^2}$ Unzutreffendes bitte steichen. Falls "Nein" nicht durchgestrichen ist oder die Unterschrift fehlt, wird das Ergebniss nicht ausgehängt.

Begründungen nicht vergessen!

1. Aufgabe

(8 Punkte)

Lösen Sie mit der Laplace-Transformation das Anfangswertproblem

$$y'' + 2y' + y = 4e^x$$
, $y(0) = 1$, $y'(0) = 0$.

2. Aufgabe

(12 Punkte)

Gegeben ist die Folge $x(n) = \begin{cases} 2^n & n \text{ gerade,} \\ \frac{1}{3^n} & n \text{ ungerade,} \end{cases}$ $n \in \mathbb{N}_0$.

Berechnen Sie die Z-Transformierte $F^*(z) = Z[x(n)](z)$. Skizzieren Sie den Kon-

vergenzbereich von F^* .

3. Aufgabe

(8 Punkte)

Mit der Fouriertransformation bestimmen Sie die Lösung der folgende Integralgleichung

$$\int_{-\infty}^{\infty} y(\tau) y(t-\tau) d\tau = e^{-2t^2}, \ t \in \mathbb{R}.$$

Hinweis: $F[e^{-at^2}](\omega) = \sqrt{\frac{\pi}{a}} e^{\frac{-\omega^2}{4a}}, \quad a > 0.$

4. Aufgabe

(12 Punkte)

Lösen Sie das Randwertproblem für die Potentialgleichung

$$u_{xx} + u_{yy} = 0$$

auf dem Quadrat $Q = \{(x,y) \in \mathbb{R}^2 : 0 < x < \pi, \ 0 < y < \pi \}$ mit den Randwerten $u(0,y) = u(\pi,y) = 0$ und $u(x,0) = u(x,\pi) = \sin(x)$ mittels Produktansatz.