TECHNISCHE UNIVERSITÄT BERLIN

WS 01/02 10.04.2002

Fakultät II, Institut für Mathematik Prof. G. Frank

April–Klausur (Verständnisteil) Integraltransformationen und partielle Differentialgleichungen

Name: V MatrNr.: S	
Neben einem handbeschriebenen A4 Blazugelassen. Die Lösungen sind in Reinsc Bleistift geschriebene Klausuren können rusur ist mit 32 von 80 Punkten bestande Klausur mindesten 10 von 40 Punkten er	chrift auf A4 Blättern abzugeben. Mit nicht gewertet werden. Die Gesamtklau- en, wenn in jedem der beiden Teile der
Dieser Teil der Klausur umfasst die Verst Rechenaufwand mit den Kenntnissen au immer eine kurze Begründung an. Die	s der Vorlesung lösbar sein. Geben Sie
Einsichtnahme: Dienstag, 16.04.2002, 14.	00-16.00 Uhr, MA 848.

1	2	3	4	5	6	\sum

Begründungen nicht vergessen!

1. Aufgabe

(6 Punkte)

Sei $f:[0,\infty[\to\mathbb{R}$ eine Funktion. Definieren Sie f ist von exponentieller Ordnung. Überprüfen Sie, ob die folgenden Funktionen von exponentieller Ordnung sind.

a)
$$f_1(t) = e^{2t^2}$$
, b) $f_2(t) = t^2 e^{-t^2}$, c) $f_3(t) = \frac{t^2}{2}e^{2t}$.

2. Aufgabe

(6 Punkte)

Sei $f: \mathbb{R} \to \mathbb{C}$ eine Schwartz-Funktion. Zeigen Sie:

Ist f eine gerade Funktion, so gilt für die Fouriertransformierte von f:

$$F(\omega) = F[f(t)](\omega) = 2 \int_0^\infty f(t) \cos(\omega t) dt, \ \omega \in \mathbb{C}.$$

Ist F eine gerade Funktion? Begründen Sie Ihre Antwort.

3. Aufgabe

(6 Punkte)

Sei $(y_n)_{n\in\mathbb{N}_0}$ eine reelle Zahlenfolge. Es gelte $y_n=0$ für $n>n_0\in\mathbb{N}$. Wo konvergiert die Z-Transformierte $Z[y_n](z)$ mindestens?

4. Aufgabe

(7 Punkte)

Sei $f:[0,\infty]\to\mathbb{R}$ eine stückweise stetige Funktion von exponentieller Ordnung.

a) Beweisen Sie den Multiplikationssatz der Laplacetransformation: Es existiert ein $\gamma_0 \in \mathbb{R}$, so dass für alle $s \in \mathbb{C}$ mit $Re(s) > \gamma_0$ gilt:

$$L[tf(t)](s) = -\frac{d}{ds}L[f(t)](s).$$

b) Zeigen Sie mittels des Multiplikationssatzes:

$$L[t](s) = \frac{1}{s^2}, Re(s) > 0.$$

5. Aufgabe

(7 Punkte)

Welche der Funktionen $y_1(x) = x$ und $y_2(x) = \sin(x)$ löst das Anfangswertproblem

$$y'' + y' = 1$$
, $y(0) = 0$, $y'(0) = 1$?

Begründen Sie Ihre Antwort.

6. Aufgabe

(8 Punkte)

Gegeben ist die Potentialgleichung im \mathbb{R}^2 : $u_{xx} + u_{yy} = 0$. Welche Lösungen liefert der additive Trennungsansatz u(x, y) = X(x) + Y(y)?