Technische Universität Berlin

Fakultät II – Institut für Mathematik Prof. Dr. Bärwolff

SS 06 11. Oktober 2006

Oktober – Klausur (Rechenteil) Integraltransformationen und partielle Differentialgleichungen für Ingenieure

Name:	Vorname:				
MatrNr.:					
Neben einem handbeschriebenen A4 B				-	
le zugelassen. Taschenrechner und Forn Lösungen sind in Reinschrift auf A4 I	_			_	
bene Klausuren können nicht gewerte		Scoon.	WIII DI	2130110 E	coemic
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechenaufga	ben. G	eben S	Sie imr	ner den
Die Bearbeitungszeit beträgt eine St u	ınde.				
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1			*	·	
Korrektur					
	1	2	3	4	Σ

1. Aufgabe 11 Punkte

Es bezeichne S das LTI System, das das Eingangssignal e auf die Lösung i des folgenden Anfangswertproblems abbildet:

$$41 \int_0^t i(\tau) d\tau + 10i(t) + i'(t) = e(t), \qquad t \ge 0,$$
$$i(0) = 0.$$

- i) Berechnen Sie die Übertragungsfunktion und die Impulsantwort des Systems.
- ii) Geben Sie den Frequenzgang von S an.

2. Aufgabe 9 Punkte

Lösen Sie folgende Integralgleichung mit Hilfe der Fouriertransformation:

$$\int_{-\infty}^{\infty} y(u)y(t-u) \, du = e^{-\frac{t^2}{25}}.$$

<u>Hinweis:</u> $\mathcal{F}[e^{-ax^2}](\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$.

3. Aufgabe 11 Punkte

Lösen Sie das Rand-Anfangswertproblem der 1-dimensionalen Wärmeleitungsgleichung

$$u_t = 3u_{xx}, \qquad 0 \leqslant x \leqslant 2, \quad 0 \leqslant t,$$

Randbedingungen

$$u(0,t) = u(2,t) = 0, \quad 0 \le t,$$

Anfangstemperaturverteilung $u(x,0) = 4\sin(6\pi x), 0 \le x \le 2$

mit Hilfe des Produktansatzes.

4. Aufgabe 9 Punkte

Berechnen Sie mit Hilfe der Fourier-Transformation für die Lösung u des AWPs

$$u_t(x,t) = 4u_{xx}(x,t) + u_x(x,t), \qquad t \ge 0, x \in \mathbb{R},$$

$$u(x,0) = e^{-\frac{1}{4}x^2}, \qquad x \in \mathbb{R}.$$

die Spektralfunktion $U(\omega,t) := \mathcal{F}[u(.,t)](\omega)$.

Hinweis:
$$\mathcal{F}[e^{-ax^2}](\omega) = \sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}.$$