Technische Universität Berlin

Fakultät II – Institut für Mathematik Prof. Dr. Schief SS 08 23. Juli 2008

Juli – Klausur (Rechenteil) Integraltransformationen und partielle Differentialgleichungen für Ingenieure

Name:	Vorname	Vorname:				
MatrNr.:	Studiengang:					
Neben einem handbeschriebenen A4 ibelle zugelassen. Taschenrechner und l Die Lösungen sind in Reinschrift ar geschriebene Klausuren können nicht	Formelsam uf A4 Blä	ımlunge ttern a	n sind r	nicht zug	gelassen.	
Dieser Teil der Klausur umfasst die vollständigen Rechenweg an.	Rechenau	fgaben.	Geben	Sie im	mer den	
Die Bearbeitungszeit beträgt eine St u	unde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1			*	•		
Korrektur						
	1	2	3	4	Σ	

1. Aufgabe

11 Punkte

Ermitteln Sie die allgemeine Lösung $\vec{y}(t)$ des reellen Differentialgleichungssystems

$$\frac{\mathrm{d}}{\mathrm{d}t}\vec{y}(t) = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix} \vec{y}(t).$$

2. Aufgabe

9 Punkte

Ermitteln Sie die Lösung y des Anfangswertproblems

$$y'' + y = 2\delta(t - 1),$$
 $y(0) = 1, y'(0) = 0.$

Dabei ist $\delta(t-1)$ die in 1 konzentrierte Delta-Funktion.

3. Aufgabe

12 Punkte

Lösen Sie mit Hilfe des Separationsansatzes das Rand-Anfangswertproblem in u(x,t):

$$\frac{\partial^2 u(x,t)}{\partial x^2} - \frac{1}{4} \frac{\partial u(x,t)}{\partial t} = 0, \qquad 0 \le x \le 2\pi, \quad t \ge 0$$
$$u(0,t) = 0, \qquad u(2\pi,t) = 0, \qquad \frac{\partial u(x,0)}{\partial t} = -8\sin 2x.$$

4. Aufgabe

8 Punkte

Gegeben ist im \mathbb{R}^2 die partielle Differentialgleichung (in ebenen Polarkoordinaten)

$$\Delta u(r,\varphi) = J_2(\frac{1}{2}j_{2;3}r)\sin 2\varphi + 2J_4(\frac{1}{2}j_{4;2}r)\sin 4\varphi \quad \text{ für } r < 2, \ \varphi \in [0, 2\pi[\ (*)]]$$

mit der Randbedingung

$$u(r,\varphi) = 0$$
 für $r = 2, \ \varphi \in [0, 2\pi[,$ (**)

wobei $j_{2;3}$ und $j_{4;2}$ Nullstellen der Besselfunktionen J_2 bzw. J_4 sind. Für $n, m \in \mathbb{N}$ haben die Ansatzfunktionen

$$u_{nm}(r,\varphi) := J_n(\frac{1}{2}j_{n:m}r)\sin n\varphi$$

die Eigenschaft

$$\Delta u_{nm}(r,\varphi) = -\frac{1}{4}(j_{n,m})^2 u_{nm}(r,\varphi). \tag{***}$$

- a) Zeigen Sie, dass die Funktionen $u_{nm}(r,\varphi)$ die Randbedingung (**) erfüllen.
- b) Ermitteln Sie mit Hilfe der Funktionen $u_{nm}(r,\varphi)$ die Lösung $u(r,\varphi)$ des Randwertproblems.

Hinweis: Es ist *nicht* verlangt, die Eigenschaft (***) zu beweisen.