Technische Universität Berlin

Fakultät II – Institut für Mathematik Penn-Karras

SS17 2.8.2017

Juli – Klausur Integraltransformationen und partielle Differentialgleichungen für Ingenieure

Name:					Vorname:	Vorname:					
MatrNr.:					Studiengang	;	••••				
gelassen. Ta	schenr ktronis	echner	und Fo	ormelsa	t mit Notizen ammlung sind ige Geräte wie	nicht	zugelas	ssen. Es	s dürfer	n	
_					A4 Blättern wertet werder	_	ben. M	Iit Blei	stift ge	-	
					lständigen R eine kurze B		_		/erständ	dnisteil,	
Die Bearbei	tungsz	eit beti	ägt 90) Minu	ıten.						
					Punkten bes 0 von 30 Punl		,	•		- r -	
Korrektur											
	1	2	3	Σ		4	5	6	Σ		
					_						

Rechenteil

1. Aufgabe

9 Punkte

a) Bestimmen Sie die allgemeine Lösung für das System

$$\dot{\vec{x}} = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 4 \end{pmatrix} \vec{x}.$$

b) Lösen Sie das Anfangswertproblem

$$\dot{\vec{x}} = \begin{pmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 1 & 1 & 4 \end{pmatrix} \vec{x}, \quad \vec{x}(0) = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}.$$

2. Aufgabe

9 Punkte

Sei $f:[0,\infty[\to\mathbb{C} \text{ definiert als}]$

$$f(t) = \begin{cases} 0 & \text{für } 0 \le t \le 1\\ 1 & \text{für } 1 < t \le 3\\ 0 & \text{für } t > 3. \end{cases}$$

- a) Bestimmen Sie die Laplace-Transformierte von f.
- b) Bestimmen Sie die Lösung des Anfangswertproblems

$$y'' + 25y = f(t), \quad y(0) = -2, \quad y'(0) = 3.$$

3. Aufgabe

12 Punkte

a) Bestimmen Sie alle Lösungen der partiellen Differentialgleichung

$$u_t = 5u_{xx}$$

die von der Form u(x,t) = F(x)G(t) sind mit der Eigenschaft, dass G(t) für $t \to \infty$ gegen Null strebt, d.h.

$$\lim_{t \to \infty} G(t) = 0.$$

b) Bestimmen Sie alle Lösungen aus Teil (a), welche die Randbedingungen

$$u_x(0,t) = u(\pi/2,t) = 0$$
 erfüllen.

c) Bestimmen Sie alle Lösungen aus Teil (b), welche die Anfangsbedingungen

$$u(x,0) = 3\cos x - 2\cos 3x$$
 erfüllen.

Verständnisteil

4. Aufgabe 11 Punkte

Wir betrachten ein LTI-System S, welches für die Eingangsgröße

$$F(t) = e^{-t}$$

die Ausgangsgröße (Systemantwort)

$$S[F](t) = e^{-t} - e^{2t}$$

liefert.

- a) Bestimmen Sie die Übertragungsfunktion und Impulsantwort des Systems.
- b) Bestimmen Sie die Systemantwort $y = S[e^{2t}]$ auf die Eingangsgröße

$$f(t) = e^{2t}.$$

c) Welche Funktion $g:[0,\infty[\to\mathbb{C} \text{ erfüllt}]$

$$S[g](t) = t^2 e^{2t}?$$

5. Aufgabe 10 Punkte

Welche der folgenden Aussagen sind wahr bzw. falsch? Geben Sie jeweils eine Begründung oder ein Gegenbeispiel an. Es gibt **2 Punkte** für jeden Teil. Antworten ohne Begründung geben keine Punkte.

a) Das Differentialgleichungssystem $\dot{\vec{x}} = A\vec{x}$ habe die (spezielle) Lösung

$$\vec{x}(t) = \begin{pmatrix} 2\\1 \end{pmatrix} + t \begin{pmatrix} 4\\3 \end{pmatrix}.$$

Dann ist auch $\vec{y}(t) = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ eine Lösung des Systems.

b) Es gibt eine lineare, homogene Dgl. 4.Ordnung mit konstanten, reellen Koeffizienten, welche

$$y_1(t) = te^{2t} \sin t \text{ und } y_2(t) = e^{5t}$$

als Lösungen hat.

c) Die einzige Lösung $y : \mathbb{R} \to \mathbb{R}$ des Anfangswertproblems für die separable Dgl.

$$y' = e^{17y^3 + \cos^6 x} (3 - y)^2, \quad y(0) = 3$$

ist $y(x) = 3, x \in \mathbb{R}$.

d) Für die Laplacetansformierte von e^{-t^2} gilt

$$\mathcal{L}[e^{-(t-3)^2}](s) = e^{-3s}\mathcal{L}[e^{-t^2}](s).$$

e) Die Funktion $u: \mathbb{R}^2 \to \mathbb{R}$ definiert als

$$u(x,t) = \sin(3x - t)$$

ist eine Lösung der Wellengleichung

$$9u_{tt}(x,t) = u_{xx}(x,t).$$

6. Aufgabe

9 Punkte

Sei $u: \mathbb{R} \times [0, \infty[\to \mathbb{C}$ (Fourier-transformierbar bzgl. x) eine Lösung des Anfangswertproblems

$$u_t(x,t) = -3u_{xxxx}(x,t), \quad u(x,0) = e^{-|x|/6}.$$

Bestimmen Sie die Fouriertransformierte von u bzgl. der Variablen x:

$$U(\omega, t) = \mathcal{F}[u(\cdot, t)](\omega) = \int_{-\infty}^{\infty} u(x, t)e^{-i\omega x}dx.$$

Hinweis: Es gilt

$$\mathcal{F}[e^{-|x|}](\omega) = \frac{2}{1+\omega^2}.$$