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Information Theory and Applications (Module ID: 40981)

Written Test 1: Solutions

1. [15 %] Consider the discrete i.i.d. source X defined on the alphabet X = {1, 2, 3, 4, 5, 6},
with probability distribution PX(1) = 2/3, PX(2) = 1/6, PX(3) = 1/12, PX(4) = PX(5) =
PX(6) = 1/36. Find a Huffman code for this source that encodes single symbols (i.e., with
input block length n = 1), and compare the achieved average coding length with the source
entropy H(X).

Solution:

2. [30 %] Consider the tree source {Xi : i = 1, 2, 3, . . .} in the figure:
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a) Compute its entropy rate (in bits per symbol).

b) Consider the following sequence generated by the source:

aaabcaabdabcaabdaaabcaabd

parse the sequence using Lempel-Ziv parsing, and encode the resulting sequence using the
Lempel-Ziv algorithm. Then, calculate the resulting normalized coding length in bit/symbol
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(notice: in LZ coding the output length in bits is given by c(�log c� + �log |X |�) where c is
the number of phrases in the LZ parsing).

c) We neglect the memory in the source and treat the source as if it was i.i.d., using a Huffman
code with probabilities pa = P(Xi = a), pb = P(Xi = b), pc = P(Xi = c), pd = P(Xi = d).
Provide such Huffman code, and compute its rate (average normalized coding length in bits
per source symbol).

Hint: here the key difficulty is to compute the marginal distribution of the source, i.e., the
probabilities pa, pb, pc, pd given above. A way to do this is to represent the source as generated
by an underlying Markov Chain that produces a source symbol in correspondence of each state
transition, and compute the stationary distribution of this Markov Chain. Then, use the
law of total probability conditioning on the Markov Chain state (distributed according to its
stationary distribution). For example, a possible chain is represented in the figure, together
with the symbol-transition correspondence:
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Solution:

a) Here we use the result seen in class (one of the problem sets) about tree sources and the
renewal-reward theorem. The entropy rate is given by

H(X ) =
entropy of the “terminal leaves pmf”

mean renewal time

where the mean renewal time is the average time (number of steps, or symbols) for which the
source resets, i.e., it goes back to the root of the tree.

The source emits symbols “a” with probability 0.7, symbols “bc” with probability 0.3 ∗ 0.5 =
0.15, and symbols ”bd” with probability 0.3 ∗ 0.5 = 0.15. Hence, the entropy of the terminal
leaves a, bc, and bd, is

H = −0.7 ∗ log 0.7− 0.15 ∗ log 0.15− 0.15 ∗ log 0.15 = 1.1813 bits

The mean renewal time is

T = 0.7 ∗ 1 + 0.15 ∗ 2 + 0.15 ∗ 2 = 1.3 symbols

Finally, the entropy rate is given by

H(X ) =
1.1813

1.3
= 0.9087 bits/symbol

b) The LZ parsing is given by

a, aa, b, c, aab, d, ab, ca, abd, aaa, bc, aabd
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We have 12 blocks. The encoding is give by

(0, a), (1, a), (0, b), (0, c), (2, b), (0, d), (1, b), (4, a), (7, d), (2, a), (3, c), (5, d)

Using �log(12)� = 4 bits for the index, and �log |X |� = 2 bits for the symbols, the total length
in binary digits is 12 ∗ (4+ 2) = 72, yielding a normalized length of 72/25 = 2.88 bit/symbol.
Noice that this is much larger than the entropy rate since the sequence is too short for the
asymptotic optimality to manifest.

c) The stationary distribution of the MC in the figure is obtained in the derivation below
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It follows that the marginal probability of symbol “a” is

pa = π1 ∗ P0,0 = 0.7692 ∗ 0.7 = 0.5384

The marginal probability of symbol “b” is

pb = π1 ∗ P0,1 + π1 ∗ P0,2 = 0.2308

The marginal probability of symbols “c” and “d” is

pc = pd = π2 = π3 = 0.1154

The corresponding Huffman code is given below

3. [15 %] Let X be a discrete memoryless source on an alphabet X with pmf PX and let
g : X → R be a function (not generally non-negative).

We want to generalize the typical average lemma to generic functions g for which the mean
E[g(X)] =

�
x∈X g(x)PX(x) exists, i.e., such that

�
x∈X |g(x)|PX(x) < ∞.

In particular, prove that for any x ∈ T (n)
� (X) we have

E[g(X)]− δ(�) ≤ 1

n

n�

i=1

g(xi) ≤ E[g(X)] + δ(�)

where δ(�) vanishes as � ↓ 0.

Hint: for any function you can always write g(x) = g+(x)−g−(x) where g+(x) = max{g(x), 0}
and g−(x) = −min{g(x), 0} are the positive and negative parts of g.

Solution:
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From the definition, we can write

g(x) = g+(x)− g−(x)

where g+ and g− are non-negative functions. Then, the typical average lemma yields that,

for any x ∈ T (n)
� (X),

(1− �)E[g+(X)] ≤ 1

n

n�

i=1

g+(xi) ≤ (1 + �)E[g+(X)]

and

(1− �)E[g−(X)] ≤ 1

n

n�

i=1

g−(xi) ≤ (1 + �)E[g−(X)]

Multiplying by −1 all terms of the second inequality, we obtain

−(1− �)E[g−(X)] ≥ − 1

n

n�

i=1

g−(xi) ≥ −(1 + �)E[g−(X)]

or, equivalently,

−(1 + �)E[g−(X)] ≤ − 1

n

n�

i=1

g−(xi) ≤ −(1− �)E[g−(X)]

Finally, adding up the first and the last inequalities we find

(1−�)E[g+(X)]−(1+�)E[g−(X)] ≤ 1

n

n�

i=1

g+(xi)−
1

n

n�

i=1

g−(xi) ≤ (1+�)E[g+(X)]−(1−�)E[g−(X)]

which can be rewritten as

E[g(X)]− �(E[g+(X)] + E[g−(X)]) ≤ 1

n

n�

i=1

g(xi) ≤ E[g(X)] + �(E[g+(X)] + E[g−(X)])

from which the final result follows by letting

δ(�) = �(E[g+(X)] + E[g−(X)])

Notice that the absolute summability of the function g(x) guarantees that both E[g+(X)] and
E[g−(X)] exist (finite), and therefore we have that δ(�) vanishes as � ↓ 0.

4. [10 %] Calculate the capacity of the DMC represented in the figure below, where |X | = |Y| =
K ≥ 2 (some generic integer), and p ∈ (0, 1). The result is an expression in terms of K and
p.
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1− p

p

Solution:

This is a strongly symmetric channel for which

C = log |X |−H((1− p, p, 0, . . . , 0) = logK −H2(p)

5. [30 %] Consider the concatenation of the BSC and the BEC given in the figure below.

a) Calculate the capacity of the concatenated channel in terms of p ∈ (0, 1/2) and � ∈ (0, 1).

b) Suppose now that in between the BSC and the BEC we introduce a relay, i.e., a device
that can process arbitrarily long blocks of the output of the BSC and translate them into
arbitrarily long blocks of input for the BEC. Show that the capacity of the concatenation
with the relay in this case is given by Crelay = min{Cbsc, Cbec} where Cbsc and Cbec are the
individual capacities of the BSC and of the BEC, respectively.

c) Show that the capacity of the concatenated channel (without relay) is upperbounded by
Crelay.

Hint: in order to answer question b) you have to prove an achievability and a converse. For
the achievability, you may consider a specific realization of the relay that decoded the (coded)
input block of the BSC, retrieves the information message, and re-encode the message into a
codeword for the BEC (this type of relaying is called “decode and forward”, and in this case
it turns out to be optimal). For the converse, consider the data processing inequality.
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Solution:
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a) Let’s call the input of the BSC X, its output (and input of the BEC) Y , and the output
of the BEC Z. The concatenated channel from X to Z has transition probability matrix

P =

�
(1− p)(1− �) � p(1− �)

p(1− �) � (1− p)(1− �)

�

This is a weakly symmetric channel, whose capacity is given by

C = max
PX

I(X;Z) = max
PX

H(Z)−H((1− p)(1− �), �, p(1− �))

Our goal is to maximize the entropy of Z with respect to the input distribution PX . Let
PX(1) = α and PX(0) = 1− α. Then,

PZ(0) = (1− α)(1− p)(1− �) + αp(1− �)

PZ(1) = α(1− p)(1− �) + (1− α)p(1− �)

PZ(?) = (1− α)�+ α� = �

such that

H(Z) = H (PZ(0), �, PZ(1))

Remember that entropy is increased as the pmf gets closer to a uniform distribution. Since
PZ(?) = �, independently of α, we maximize the entropy by making PZ(0) = PZ(1), i.e., by
choosing α = 1/2. The result is:

Cconc = H
�
1− �

2
, �,

1− �

2

�
−H ((1− p)(1− �), �, p(1− �)) .

b) Define
Cbsc = max

PX

I(X;Y )

and
Cbec = max

PY

I(Y ;Z)

It is clear that we can encode information bits at rate up to Cbsc and these can be reliably
decoded by the intermediate relay. Then, the relay can re-encode the bits at rate up to Cbec

and send them reliably to the destination. Hence, this decode and forward strategy achieves
the rate min{Cbsc, Cbec}.
In order to show that this is indeed the capacity, we need to show that it is impossible to do
better (i.e., we need a converse statement). Notice that the relay channel can be improved
by replacing either the BSC or the BEC with a perfect channel that does not cause any error
or erasure, with transition matrix

P =

�
1 0
0 1

�

The capacity of the original relay channel cannot be larger than that of either enhanced
channels. Hence, by contradiction, if there exist codes of rate R > Cbsc and vanishing
probability of error for the relay channel, these would violate the capacity of of the enhanced
channel obtained by replacing the BEC with the perfect channel. Following a symmetric
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argument, if there exist codes of rate R > Cbec and vanishing probability of error for the relay
channel, these would violate the capacity of of the enhanced channel obtained by replacing
the BSC with the perfect channel. It follows that Crelay = min{Cbsc, Cbec}.
c) Given the Markov chain X → Y → Z, the data processing inequality implies:

I(X;Y ) ≥ I(X;Z)

I((Y ;Z) ≥ I(X;Z).

The above two inequalities hold for any joint distribution of X,Y, Z satisfying the above
said Markov chain. Let X(1) denote the X maximizing I(X;Y ), and X(c) denote the X
maximizing I(X;Z). Then, we have

Cbsc = I(X(1);Y ) ≥ I(X(c);Y ) ≥ I(X(c);Z) = Cconc

Consider now the second inequality. With a similar argument, let Y (2) be the distribution of
Y that maximizes I(Y ;Z), and let Y (c) induced by X(c). Then, we have

Cconc = I(X(c);Z) ≤ I(Y (c);Z) ≤ I(Y (2);Z) = Cbec

Hence, we conclude that Cconc ≤ Crelay.


